Geometric torsions and an Atiyah-style topological field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 405-418 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We generalize the construction of invariants of three-dimensional manifolds with a triangulated boundary that we previously proposed for the case where the boundary consists of not more than one connected component to any number of components. These invariants are based on the torsion of acyclic complexes of geometric origin. An adequate tool for studying such invariants turns out to be Berezin's calculus of anticommuting variables; in particular, they are used to formulate our main theorem, concerning the composition of invariants under a gluing of manifolds. We show that the theory satisfies a natural modification of Atiyah's axioms for anticommuting variables.
Keywords: geometric torsion, topological field theory.
@article{TMF_2009_158_3_a6,
     author = {I. G. Korepanov},
     title = {Geometric torsions and {an~Atiyah-style} topological field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {405--418},
     year = {2009},
     volume = {158},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a6/}
}
TY  - JOUR
AU  - I. G. Korepanov
TI  - Geometric torsions and an Atiyah-style topological field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 405
EP  - 418
VL  - 158
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a6/
LA  - ru
ID  - TMF_2009_158_3_a6
ER  - 
%0 Journal Article
%A I. G. Korepanov
%T Geometric torsions and an Atiyah-style topological field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 405-418
%V 158
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a6/
%G ru
%F TMF_2009_158_3_a6
I. G. Korepanov. Geometric torsions and an Atiyah-style topological field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 405-418. http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a6/

[1] I. G. Korepanov, TMF, 158:1 (2009), 98–114 | DOI | MR | Zbl

[2] I. G. Korepanov, Invariants of three-dimensional manifolds from four-dimensional Euclidean geometry, arXiv: math/0611325

[3] I. G. Korepanov, E. V. Martyushev, TMF, 129:1 (2001), 14–19 | DOI | MR | Zbl

[4] I. G. Korepanov, TMF, 138:1 (2004), 23–34 | DOI | MR | Zbl

[5] R. M. Kashaev, I. G. Korepanov, E. V. Martyushev, A finite-dimensional TQFT for three-manifolds based on group $PSL(2,\mathbb C)$ and cross-ratios, arXiv: 0809.4239

[6] I. G. Korepanov, TMF, 131:3 (2002), 377–388 | DOI | MR | Zbl

[7] I. G. Korepanov, TMF, 133:1 (2002), 24–35 | DOI | MR | Zbl

[8] I. G. Korepanov, TMF, 135:2 (2003), 179–195 | DOI | MR | Zbl

[9] I. G. Korepanov, SIGMA, 1 (2005), Paper 021, 7 pp. | DOI | MR | Zbl

[10] I. G. Korepanov, J. Nonlinear Math. Phys., 8:2 (2001), 196–210 | DOI | MR | Zbl

[11] M. F. Atiyah, Publ. Math. IHES, 1988, no. 68, 175–186 | DOI | MR | Zbl

[12] M. Atya, Geometriya i fizika uzlov, Mir, M., 1995 | MR | MR | Zbl

[13] J. Dubois, I. G. Korepanov, E. V. Martyushev, Euclidean geometric invariant of framed knots in manifolds, arXiv: math/0605164 | MR

[14] F. A. Berezin, Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo MGU, M., 1983 | MR | Zbl

[15] E. V. Martyushev, Geometricheskie invarianty trekhmernykh mnogoobrazii, uzlov i zatseplenii, Dis. $\dots$ kand. fiz.-matem. nauk, YuUrGU, Chelyabinsk, 2007; http:// www.susu.ac.ru/file/thesis.pdf

[16] E. V. Martyushev, Izv. Chelyabinsk. nauchn. tsentra, 2003, no. 2(19), 1–5 | MR

[17] D. Johnson, A geometric form of Casson's invariant and its connection to Reidemeister torsion, unpublished

[18] J. W. Barrett, I. Naish-Guzman, The Ponzano–Regge model, arXiv: 0803.3319