Geometric torsions and an~Atiyah-style topological field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 405-418

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize the construction of invariants of three-dimensional manifolds with a triangulated boundary that we previously proposed for the case where the boundary consists of not more than one connected component to any number of components. These invariants are based on the torsion of acyclic complexes of geometric origin. An adequate tool for studying such invariants turns out to be Berezin's calculus of anticommuting variables; in particular, they are used to formulate our main theorem, concerning the composition of invariants under a gluing of manifolds. We show that the theory satisfies a natural modification of Atiyah's axioms for anticommuting variables.
Keywords: geometric torsion, topological field theory.
@article{TMF_2009_158_3_a6,
     author = {I. G. Korepanov},
     title = {Geometric torsions and {an~Atiyah-style} topological field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {405--418},
     publisher = {mathdoc},
     volume = {158},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a6/}
}
TY  - JOUR
AU  - I. G. Korepanov
TI  - Geometric torsions and an~Atiyah-style topological field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 405
EP  - 418
VL  - 158
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a6/
LA  - ru
ID  - TMF_2009_158_3_a6
ER  - 
%0 Journal Article
%A I. G. Korepanov
%T Geometric torsions and an~Atiyah-style topological field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 405-418
%V 158
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a6/
%G ru
%F TMF_2009_158_3_a6
I. G. Korepanov. Geometric torsions and an~Atiyah-style topological field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 405-418. http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a6/