Solutions of the~three-dimensional sine-Gordon equation
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 370-377
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We obtain exact solutions $U(x,y,z,t)$ of the three-dimensional sine-Gordon equation in a form that Lamb previously proposed for integrating the two-dimensional sine-Gordon equation. The three-dimensional solutions depend on arbitrary functions $F(\alpha)$ and $\Phi(\alpha,\beta)$, whose arguments are some functions $\alpha(x,y,z,t)$ and $\beta(x,y,z,t)$. The ansatzes must satisfy certain equations. These are an algebraic system of equations in the case of one ansatz. In the case of two ansatzes, the system of algebraic equations is supplemented by first-order ordinary differential equations. The resulting solutions $U(x,y,z,t)$ have an important property, namely, the superposition principle holds for the function $\operatorname{tan}(U/4)$. The suggested approach can be used to solve the generalized sine-Gordon equation, which, in contrast to the classical equation, additionally involves first-order partial derivatives with respect to the variables $x$, $y$, $z$, and $t$, and also to integrate the sinh-Gordon equation. This approach admits a natural generalization to the case of integration of the abovementioned types of equations in a space with any number of dimensions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
sine-Gordon equation, superposition principle.
Keywords: wave equation, Hamilton–Jacobi equation
                    
                  
                
                
                Keywords: wave equation, Hamilton–Jacobi equation
@article{TMF_2009_158_3_a3,
     author = {E. L. Aero and A. N. Bulygin and Yu. V. Pavlov},
     title = {Solutions of the~three-dimensional {sine-Gordon} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {370--377},
     publisher = {mathdoc},
     volume = {158},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a3/}
}
                      
                      
                    TY - JOUR AU - E. L. Aero AU - A. N. Bulygin AU - Yu. V. Pavlov TI - Solutions of the~three-dimensional sine-Gordon equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 370 EP - 377 VL - 158 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a3/ LA - ru ID - TMF_2009_158_3_a3 ER -
E. L. Aero; A. N. Bulygin; Yu. V. Pavlov. Solutions of the~three-dimensional sine-Gordon equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 370-377. http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a3/
