Integrable $sl(N,\mathbb C)$ tops as Calogero--Moser systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 355-369

Voir la notice de l'article provenant de la source Math-Net.Ru

We show a relation between systems of integrable tops on the algebras $sl(N,\mathbb C)$ and Calogero–Moser systems of $N$ particles. We construct classical Lax operators corresponding to these systems. We show that these operators are related to certain new trigonometric and rational solutions of the Yang–Baxter equations for the algebras $sl(N,\mathbb C)$ and give explicit formulas for $N=2,3$.
Keywords: integrable system, Euler–Arnold top, Yang–Baxter equation.
@article{TMF_2009_158_3_a2,
     author = {A. V. Smirnov},
     title = {Integrable $sl(N,\mathbb C)$ tops as {Calogero--Moser} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--369},
     publisher = {mathdoc},
     volume = {158},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a2/}
}
TY  - JOUR
AU  - A. V. Smirnov
TI  - Integrable $sl(N,\mathbb C)$ tops as Calogero--Moser systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 355
EP  - 369
VL  - 158
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a2/
LA  - ru
ID  - TMF_2009_158_3_a2
ER  - 
%0 Journal Article
%A A. V. Smirnov
%T Integrable $sl(N,\mathbb C)$ tops as Calogero--Moser systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 355-369
%V 158
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a2/
%G ru
%F TMF_2009_158_3_a2
A. V. Smirnov. Integrable $sl(N,\mathbb C)$ tops as Calogero--Moser systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 355-369. http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a2/