Integrable $sl(N,\mathbb C)$ tops as Calogero--Moser systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 355-369
Voir la notice de l'article provenant de la source Math-Net.Ru
We show a relation between systems of integrable tops on the algebras $sl(N,\mathbb C)$ and
Calogero–Moser systems of $N$ particles. We construct classical Lax operators corresponding to these systems. We show that these operators are related to certain new trigonometric and rational solutions of the Yang–Baxter equations for the algebras $sl(N,\mathbb C)$ and give explicit formulas for $N=2,3$.
Keywords:
integrable system, Euler–Arnold top, Yang–Baxter equation.
@article{TMF_2009_158_3_a2,
author = {A. V. Smirnov},
title = {Integrable $sl(N,\mathbb C)$ tops as {Calogero--Moser} systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {355--369},
publisher = {mathdoc},
volume = {158},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a2/}
}
A. V. Smirnov. Integrable $sl(N,\mathbb C)$ tops as Calogero--Moser systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 355-369. http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a2/