Integrable $sl(N,\mathbb C)$ tops as Calogero–Moser systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 355-369
Cet article a éte moissonné depuis la source Math-Net.Ru
We show a relation between systems of integrable tops on the algebras $sl(N,\mathbb C)$ and Calogero–Moser systems of $N$ particles. We construct classical Lax operators corresponding to these systems. We show that these operators are related to certain new trigonometric and rational solutions of the Yang–Baxter equations for the algebras $sl(N,\mathbb C)$ and give explicit formulas for $N=2,3$.
Keywords:
integrable system, Euler–Arnold top, Yang–Baxter equation.
@article{TMF_2009_158_3_a2,
author = {A. V. Smirnov},
title = {Integrable $sl(N,\mathbb C)$ tops as {Calogero{\textendash}Moser} systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {355--369},
year = {2009},
volume = {158},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a2/}
}
A. V. Smirnov. Integrable $sl(N,\mathbb C)$ tops as Calogero–Moser systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 355-369. http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a2/
[1] A. Smirnov, Two-body systems from $sl(2,\mathbb C)$-tops, arXiv: 0711.2432
[2] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR | MR | Zbl
[3] A. Smirnov, Correspondece between Calogero–Moser systems and integrable $SL(N,\mathbb C)$ Euler–Arnold tops, arXiv: 0809.2187 | MR
[4] A. M. Levin, M. A. Olshanetsky, A. Zotov, Comm. Math. Phys., 236:1 (2003), 93–133 | DOI | MR | Zbl
[5] N. Hitchin, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR | Zbl
[6] A. Antonov, K. Hasegawa, A. Zabrodin, Nucl. Phys. B, 503:3 (1997), 747–770 ; arXiv: hep-th/9704074 | DOI | MR | Zbl
[7] A. Gorsky, A. Zabrodin, J. Phys. A, 26:15 (1993), L635–L640 ; arXiv: hep-th/9303026 | DOI | MR | Zbl