Renormalization group in the theory of turbulence: Three-loop approximation as $d\to\infty$
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 460-477
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the renormalization group method to study the stochastic Navier–Stokes equation with a random force correlator of the form $k^{4-d-2\varepsilon}$ in a $d$-dimensional space in connection with the problem of constructing a $1/d$-expansion and going beyond the framework of the standard $\varepsilon$-expansion in the theory of fully developed hydrodynamic turbulence. We find a sharp decrease in the number of diagrams of the perturbation theory for the Green's function in the large-$d$ limit and develop a technique for calculating the diagrams analytically. We calculate the basic ingredients of the renormalization group approach (renormalization constant, $\beta$-function, fixed-point coordinates, and ultraviolet correction index $\omega$) up to the order $\varepsilon^3$ (three-loop approximation). We use the obtained results to propose hypothetical exact expressions (i.e., not in the form of $\varepsilon$-expansions) for the fixed-point coordinate and the index $\omega$.
Keywords: renormalization group, fully developed turbulence.
@article{TMF_2009_158_3_a10,
     author = {L. Ts. Adzhemyan and N. V. Antonov and P. B. Goldin and T. L. Kim and M. V. Kompaniets},
     title = {Renormalization group in the~theory of turbulence: {Three-loop} approximation as $d\to\infty$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {460--477},
     year = {2009},
     volume = {158},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a10/}
}
TY  - JOUR
AU  - L. Ts. Adzhemyan
AU  - N. V. Antonov
AU  - P. B. Goldin
AU  - T. L. Kim
AU  - M. V. Kompaniets
TI  - Renormalization group in the theory of turbulence: Three-loop approximation as $d\to\infty$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 460
EP  - 477
VL  - 158
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a10/
LA  - ru
ID  - TMF_2009_158_3_a10
ER  - 
%0 Journal Article
%A L. Ts. Adzhemyan
%A N. V. Antonov
%A P. B. Goldin
%A T. L. Kim
%A M. V. Kompaniets
%T Renormalization group in the theory of turbulence: Three-loop approximation as $d\to\infty$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 460-477
%V 158
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a10/
%G ru
%F TMF_2009_158_3_a10
L. Ts. Adzhemyan; N. V. Antonov; P. B. Goldin; T. L. Kim; M. V. Kompaniets. Renormalization group in the theory of turbulence: Three-loop approximation as $d\to\infty$. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 3, pp. 460-477. http://geodesic.mathdoc.fr/item/TMF_2009_158_3_a10/

[1] U. Frisch, Turbulence. The Legacy of A. N. Kolmogorov, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[2] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Internat. Ser. Monogr. Phys., 77, Clarendon Press, Oxford, 1989 | MR | Zbl

[3] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, PIYaF, SPb., 1998 | MR | Zbl

[4] C. De Dominicis, P. C. Martin, Phys. Rev. A, 19:1 (1979), 419–422 | DOI

[5] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasilev, UFN, 166:12 (1996), 1257–1284 | DOI

[6] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasiliev, The Field Theoretic Renormalization Group in Fully Developed Turbulence, Gordon and Breach, Amsterdam, 1999 | MR | Zbl

[7] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasilev, ZhETF, 95 (1989), 1272–1288

[8] G. Falkovich, K. Gawȩdzki, M. Vergassola, Rev. Modern Phys., 73:4 (2001), 913–975 | DOI | MR | Zbl

[9] M. Chertkov, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. E, 52:5 (1995), 4924–4941 | DOI | MR

[10] D. Bernard, K. Gawȩdzki, A. Kupiainen, Phys. Rev. E, 54:3 (1996), 2564–2572 | DOI | MR

[11] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, Phys. Rev. E, 58:2 (1998), 1823–1835 | DOI | MR

[12] L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, A. N. Vasil'ev, Phys. Rev. E, 64:5 (2001), 056306 | DOI

[13] N. V. Antonov, J. Phys. A, 39:25 (2006), 7825–7865 | DOI | MR | Zbl

[14] N. V. Antonov, S. V. Borisenok, V. I. Girina, TMF, 106:1 (1996), 92–101 | DOI | MR | Zbl

[15] C.-Yu. Mou, P. B. Weichman, Phys. Rev. E, 52:4 (1995), 3738–3796 | DOI | MR

[16] R. H. Kraichnan, J. Fluid Mech., 64 (1974), 737–762 | DOI | MR | Zbl

[17] J.-D. Fournier, U. Frisch, H. A. Rose, J. Phys. A, 11:1 (1978), 187–198 | DOI | MR | Zbl

[18] V. Yakhot, Strong turbulence in $d$-dimensions, arXiv: chao-dyn/9805027

[19] H. L. Frisch, M. Schulz, Physica A, 211:1 (1994), 37–42 | DOI

[20] A. V. Runov, On the field theoretical approach to the anomalous scaling in turbulence, arXiv: chao-dyn/9906026

[21] L. Ts. Adzhemyan, N. V. Antonov, A. V. Runov, Phys. Rev. E, 64:4 (2001), 046310 | DOI

[22] L. Ts. Adzhemyan, N. V. Antonov, M. V. Kompaniets, A. N. Vasil'ev, Internat. J. Modern Phys. B, 17:10 (2003), 2137–2170 | DOI | Zbl

[23] A. A. Vladimirov, TMF, 43:2 (1980), 210–217 | DOI

[24] L. Ts. Adzhemyan, N. V. Antonov, TMF, 115:2 (1998), 245–262 | DOI | MR | Zbl