The~linearization method and new classes of exact solutions in cosmology
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 2, pp. 312-320
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop a method for constructing exact cosmological solutions of the Einstein equations based on representing them as a second-order linear differential equation. In particular, the method allows using an arbitrary known solution to construct a more general solution parameterized by a set of $3N$ constants, where $N$ is an arbitrary natural number. The large number of free parameters may prove useful for constructing a theoretical model that agrees satisfactorily with the results of astronomical observations. Cosmological solutions on the Randall–Sundrum brane have similar properties. We show that three-parameter solutions in the general case already exhibit inflationary regimes. In contrast to previously studied
two-parameter solutions, these three-parameter solutions can describe an exit from inflation without a fine tuning of the parameters and also several consecutive inflationary regimes.
Keywords:
cosmology
Mots-clés : inflation, exact solution.
Mots-clés : inflation, exact solution.
@article{TMF_2009_158_2_a9,
author = {A. V. Yurov and A. V. Astashenok},
title = {The~linearization method and new classes of exact solutions in cosmology},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {312--320},
publisher = {mathdoc},
volume = {158},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a9/}
}
TY - JOUR AU - A. V. Yurov AU - A. V. Astashenok TI - The~linearization method and new classes of exact solutions in cosmology JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 312 EP - 320 VL - 158 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a9/ LA - ru ID - TMF_2009_158_2_a9 ER -
A. V. Yurov; A. V. Astashenok. The~linearization method and new classes of exact solutions in cosmology. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 2, pp. 312-320. http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a9/