Mots-clés : invariant torus, bifurcation, chaos.
@article{TMF_2009_158_2_a8,
author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
title = {The~question of the~realizability of {the~Landau} scenario for the~development of turbulence},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {292--311},
year = {2009},
volume = {158},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a8/}
}
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - The question of the realizability of the Landau scenario for the development of turbulence JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 292 EP - 311 VL - 158 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a8/ LA - ru ID - TMF_2009_158_2_a8 ER -
%0 Journal Article %A S. D. Glyzin %A A. Yu. Kolesov %A N. Kh. Rozov %T The question of the realizability of the Landau scenario for the development of turbulence %J Teoretičeskaâ i matematičeskaâ fizika %D 2009 %P 292-311 %V 158 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a8/ %G ru %F TMF_2009_158_2_a8
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. The question of the realizability of the Landau scenario for the development of turbulence. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 2, pp. 292-311. http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a8/
[1] L. D. Landau, Dokl. AN SSSR, 44:8 (1944), 339–342 | MR | Zbl
[2] E. Hopf, Comm. Pure Appl. Math., 1:4 (1948), 303–322 | DOI | MR | Zbl
[3] E. N. Lorenz, J. Atmos. Sci., 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[4] D. Ruelle, F. Takens, Comm. Math. Phys., 20:3 (1971), 167–192 | DOI | MR | Zbl
[5] S. E. Newhouse, D. Ruelle, F. Takens, Comm. Math. Phys., 64:1 (1978), 35–40 | DOI | MR | Zbl
[6] P. Berzhe, I. Pomo, K. Vidal, Poryadok v khaose. O deterministskom podkhode k turbulentnosti, Merkurii-PRESS, Cherepovets, 2000 | MR | Zbl
[7] M. J. Feigenbaum, J. Stat. Phys., 19:1 (1978), 25–52 | DOI | MR | Zbl
[8] G. V. Osipov, Izv. vuzov. Ser. radiofiz., 31:5 (1988), 624–627 | MR
[9] G. R. Sell, “Resonance and bifurcations in Hopf–Landau dynamical systems”, Nonlinear Dynamics and Turbulence, Interaction Mech. Math. Ser., eds. G.I. Barenblatt, G. Ioss, D.D. Joseph, Pitman, Boston, MA, 1983, 305–313 | MR | Zbl
[10] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR | MR | Zbl
[11] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004
[12] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | MR | Zbl
[13] J. R. Dormand, P. J. Prince, J. Comput. Appl. Math., 6:1 (1980), 19–26 | DOI | MR | Zbl
[14] V. S. Anischenko, V. V. Astakhov, T. E. Vadivasova, A. B. Neiman, G. I. Strelkova, L. Shimanskii-Gaier, Nelineinye effekty v khaoticheskikh i stokhasticheskikh sistemakh, In-t kompyuternykh issledovanii, Moskva–Izhevsk, 2003 | MR | Zbl