The question of the realizability of the Landau scenario for the development of turbulence
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 2, pp. 292-311
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We suggest a phenomenological model for the development of turbulence in the form of the nonlinear Klein–Gordon equation perturbed by nonconservative disturbances. Combining analytic and numerical methods, we establish that the transition to turbulence in this equation can follow both the Landau and the Landau–Sell scenarios. As is known, the first scenario is related to a cascade of bifurcations of stable invariant tori of increasing dimensions. The other scenario is related to a chaotic attractor whose Lyapunov dimension increases indefinitely under variation of a certain control parameter.
Keywords: Landau scenario, turbulent attractor
Mots-clés : invariant torus, bifurcation, chaos.
@article{TMF_2009_158_2_a8,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {The~question of the~realizability of {the~Landau} scenario for the~development of turbulence},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {292--311},
     year = {2009},
     volume = {158},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a8/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The question of the realizability of the Landau scenario for the development of turbulence
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 292
EP  - 311
VL  - 158
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a8/
LA  - ru
ID  - TMF_2009_158_2_a8
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The question of the realizability of the Landau scenario for the development of turbulence
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 292-311
%V 158
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a8/
%G ru
%F TMF_2009_158_2_a8
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. The question of the realizability of the Landau scenario for the development of turbulence. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 2, pp. 292-311. http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a8/

[1] L. D. Landau, Dokl. AN SSSR, 44:8 (1944), 339–342 | MR | Zbl

[2] E. Hopf, Comm. Pure Appl. Math., 1:4 (1948), 303–322 | DOI | MR | Zbl

[3] E. N. Lorenz, J. Atmos. Sci., 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[4] D. Ruelle, F. Takens, Comm. Math. Phys., 20:3 (1971), 167–192 | DOI | MR | Zbl

[5] S. E. Newhouse, D. Ruelle, F. Takens, Comm. Math. Phys., 64:1 (1978), 35–40 | DOI | MR | Zbl

[6] P. Berzhe, I. Pomo, K. Vidal, Poryadok v khaose. O deterministskom podkhode k turbulentnosti, Merkurii-PRESS, Cherepovets, 2000 | MR | Zbl

[7] M. J. Feigenbaum, J. Stat. Phys., 19:1 (1978), 25–52 | DOI | MR | Zbl

[8] G. V. Osipov, Izv. vuzov. Ser. radiofiz., 31:5 (1988), 624–627 | MR

[9] G. R. Sell, “Resonance and bifurcations in Hopf–Landau dynamical systems”, Nonlinear Dynamics and Turbulence, Interaction Mech. Math. Ser., eds. G.I. Barenblatt, G. Ioss, D.D. Joseph, Pitman, Boston, MA, 1983, 305–313 | MR | Zbl

[10] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR | MR | Zbl

[11] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[12] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | MR | Zbl

[13] J. R. Dormand, P. J. Prince, J. Comput. Appl. Math., 6:1 (1980), 19–26 | DOI | MR | Zbl

[14] V. S. Anischenko, V. V. Astakhov, T. E. Vadivasova, A. B. Neiman, G. I. Strelkova, L. Shimanskii-Gaier, Nelineinye effekty v khaoticheskikh i stokhasticheskikh sistemakh, In-t kompyuternykh issledovanii, Moskva–Izhevsk, 2003 | MR | Zbl