Universality of the relaxation structure of equations for the dynamics of continuous media and dissipative Poisson brackets
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 2, pp. 277-291 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We generalize the Hamilton equations for dynamical processes with relaxation. We introduce a dissipative Poisson bracket in terms of the dissipation function. We obtain the universal structure of the relaxation terms in the equations for the dynamics of condensed media and verify this result for structureless liquids, elastic solids, and quantum liquids. In the examples of the condensed media under consideration, we obtain expressions for the dissipative Poisson brackets for the complete set of dynamical parameters.
Keywords: Hamiltonian approach, entropy, kinetic coefficient, solid, quantum liquid, dissipation function.
Mots-clés : dissipative Poisson bracket
@article{TMF_2009_158_2_a7,
     author = {M. Yu. Kovalevsky and V. T. Matskevich and A. Ya. Razumnyi},
     title = {Universality of the~relaxation structure of equations for the~dynamics of continuous media and dissipative {Poisson} brackets},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {277--291},
     year = {2009},
     volume = {158},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a7/}
}
TY  - JOUR
AU  - M. Yu. Kovalevsky
AU  - V. T. Matskevich
AU  - A. Ya. Razumnyi
TI  - Universality of the relaxation structure of equations for the dynamics of continuous media and dissipative Poisson brackets
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 277
EP  - 291
VL  - 158
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a7/
LA  - ru
ID  - TMF_2009_158_2_a7
ER  - 
%0 Journal Article
%A M. Yu. Kovalevsky
%A V. T. Matskevich
%A A. Ya. Razumnyi
%T Universality of the relaxation structure of equations for the dynamics of continuous media and dissipative Poisson brackets
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 277-291
%V 158
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a7/
%G ru
%F TMF_2009_158_2_a7
M. Yu. Kovalevsky; V. T. Matskevich; A. Ya. Razumnyi. Universality of the relaxation structure of equations for the dynamics of continuous media and dissipative Poisson brackets. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 2, pp. 277-291. http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a7/

[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.–L., 1946 | MR

[2] L. Kadanov, G. Beim, Kvantovaya statisticheskaya mekhanika. Funktsii Grina, ravnovesnye i neravnovesnye protsessy, Mir, M., 1964 | MR | Zbl

[3] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Fizmatlit, M., 1971 | MR

[4] A. I. Akhiezer, S. V. Peletminskii, Metody statisticheskoi fiziki, Nauka, M., 1977 | MR | MR

[5] R. Balesku, Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, T. 2, Mir, M., 1978 | MR | MR | Zbl

[6] G. Lemb, Gidrodinamika, Gostekhizdat, M.–L., 1947 | MR | Zbl

[7] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. VI. Gidrodinamika, Nauka, M., 1986 | MR | MR | Zbl

[8] K. Trusdell, Pervonachalnyi kurs ratsionalnoi mekhaniki sploshnykh sred, Mir, M., 1975 | MR | Zbl

[9] P. Zhermen, Kurs mekhaniki sploshnykh sred, Vysshaya shkola, M., 1983 | MR | Zbl

[10] A. N. Beris, B. J. Edwards, Thermodynamics of Flowing Systems with Internal Microstructure, Oxford Engrg. Sci. Ser., 36, Oxford Univ. Press, New York, 1994 | MR

[11] P. M. Chaikin, T. C. Lubensky, Principles of Condensed Matter Physics, Cambridge Univ. Press, Cambridge, 2000

[12] D. N. Zubarev, V. G. Morozov, G. Repke, Statisticheskaya mekhanika neravnovesnykh protsessov, T. 1, Fizmatlit, M., 2002 | MR | Zbl

[13] M. Yu. Kovalevskii, S. V. Peletminskii, Statisticheskaya mekhanika kvantovykh zhidkostei i kristallov, Fizmatlit, M., 2006

[14] I. E. Dzyaloshinskii, G. E. Volovick, Ann. Phys., 125:1 (1980), 67–97 | DOI | MR

[15] V. V. Lebedev, E. I. Kats, Dinamika zhidkikh kristallov, URSS, M., 1988

[16] L. D. Landau, ZhETF, 11 (1941), 592 | MR

[17] V. V. Lebedev, I. M. Khalatnikov, ZhETF, 75:6 (1978), 2312–2316 | MR

[18] A. J. Leggett, Rev. Modern Phys., 47:2 (1975), 331–414 | DOI

[19] S. P. Novikov, I. A. Taimanov, Sovremennye geometricheskie struktury i polya, MTsNMO, M., 2005 | MR | Zbl

[20] D. V. Volkov, A. A. Zheltukhin, Yu. P. Bliokh, FTT, 13 (1971), 1668 | MR

[21] A. A. Isaev, M. Yu. Kovalevskii, S. V. Peletminskii, EChAYa, 27:2 (1996), 431–492 | DOI

[22] V. E. Zakharov, E. A. Kuznetsov, UFN, 167:11 (1997), 1137–1167 | DOI

[23] V. S. Lvov, Nelineinye spinovye volny, Fizmatlit, M., 1987

[24] A. N. Kaufman, Phys. Lett. A, 100:8 (1984), 419–422 | DOI | MR

[25] P. J. Morrison, Phys. Lett. A, 100:8 (1984), 423–427 | DOI | MR

[26] M. Grmela, Phys. Lett. A, 102:8 (1984), 355–358 | DOI | MR

[27] M. Grmela, H. C. Öttinger, Phys. Rev. E, 56:6 (1997), 6620–6632 ; 6633–6655 | DOI | MR | DOI | MR

[28] V. L. Berdichevsky, Phys. Rev. E, 68:6 (2003), 066126 | DOI | MR

[29] Yu. P. Virchenko, S. V. Peletminskii, Problemy fizicheskoi kinetiki i fiziki tverdogo tela, ed. A. G. Sitenko, Naukova dumka, Kiev, 1990, 63–77