The number of eigenvalues of the two-particle discrete Schrödinger
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 2, pp. 263-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the two-particle discrete Schrödinger operator associated with the Hamiltonian of a system of two particles (fermions) interacting only at the nearest neighbor sites. We find the number and the location of the eigenvalues of this operator depending on the particle interaction energy, the system quasimomentum, and the dimension of the lattice $\mathbb Z^\nu$, $\nu\ge1$.
Keywords: Hamiltonian, two-particle discrete Schrödinger operator, quasimomentum, essential spectrum, virtual level, eigenvalue, Fredholm determinant.
@article{TMF_2009_158_2_a6,
     author = {S. N. Lakaev and A. M. Khalkhuzhaev},
     title = {The~number of eigenvalues of the~two-particle discrete {Schr\"odinger}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {263--276},
     year = {2009},
     volume = {158},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a6/}
}
TY  - JOUR
AU  - S. N. Lakaev
AU  - A. M. Khalkhuzhaev
TI  - The number of eigenvalues of the two-particle discrete Schrödinger
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 263
EP  - 276
VL  - 158
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a6/
LA  - ru
ID  - TMF_2009_158_2_a6
ER  - 
%0 Journal Article
%A S. N. Lakaev
%A A. M. Khalkhuzhaev
%T The number of eigenvalues of the two-particle discrete Schrödinger
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 263-276
%V 158
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a6/
%G ru
%F TMF_2009_158_2_a6
S. N. Lakaev; A. M. Khalkhuzhaev. The number of eigenvalues of the two-particle discrete Schrödinger. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 2, pp. 263-276. http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a6/

[1] P. A. Faria da Veiga, L. Ioriatti, M. O'Carroll, Phys. Rev. E, 66:1 (2002), 6130 | DOI | MR

[2] D. C. Mattis, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR

[3] A. I. Mogilner, “Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: problems and results”, Many Particle Hamiltonians: Spectra and Scattering, Adv. Soviet Math., 5, ed. R. A. Minlos, AMS, Providence, RI, 1991, 139–194 | MR | Zbl

[4] S. Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov, Comm. Math. Phys., 262:1 (2006), 91–115 | DOI | MR | Zbl

[5] S. N. Lakaev, Funkts. analiz i ego ppil., 27:3 (1993), 15–28 | DOI | MR | Zbl

[6] A. M. Khalkhuzhaev, Uzbek. matem. zhurn., 2000, no. 3, 32–39 | MR | Zbl

[7] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl