The correlation Bell inequalities
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 2, pp. 234-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Bell and Bell–Clauser–Horne–Shimony–Holt inequalities for two-particle spin states. It is known that these inequalities are violated in experimental verification. We show that this can be explained because these inequalities are proved for correlation functions of random variables that are totally unrelated to one another, while the verification is done using correlation functions in which random variables refer to a pair of particles forming a two-particle state. In the case of entangled states, these random functions are dependent, and their correlation coefficient is nonzero. We give inequalities that explicitly involve this correlation coefficient. For factorable and separable states, these inequalities coincide with the standard Bell and Bell–Clauser–Horne–Shimony–Holt inequalities.
Keywords: quantum mechanics, Bell inequality, spin state, hidden parameter, nonlocality, probability.
Mots-clés : correlation coefficient
@article{TMF_2009_158_2_a4,
     author = {V. A. Andreev},
     title = {The~correlation {Bell} inequalities},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {234--249},
     year = {2009},
     volume = {158},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a4/}
}
TY  - JOUR
AU  - V. A. Andreev
TI  - The correlation Bell inequalities
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 234
EP  - 249
VL  - 158
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a4/
LA  - ru
ID  - TMF_2009_158_2_a4
ER  - 
%0 Journal Article
%A V. A. Andreev
%T The correlation Bell inequalities
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 234-249
%V 158
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a4/
%G ru
%F TMF_2009_158_2_a4
V. A. Andreev. The correlation Bell inequalities. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 2, pp. 234-249. http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a4/

[1] A. Einshtein, B. Podolskii, N. Rozen, UFN, 16:4 (1936), 440–446 | DOI | Zbl

[2] N. Bor, UFN, 16:4 (1936), 446–457 | Zbl

[3] J. S. Bell, Physics, 1:3 (1964), 195–200 | MR | Zbl

[4] J. S. Bell, Rev. Modern Phys., 38:3 (1966), 447–452 | DOI | MR | Zbl

[5] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, Phys. Rev. Lett., 23:15 (1969), 880–884 | DOI

[6] I. Volovich, Towards quantum information theory in space and time, ; A. Khrennikov, I. Volovich, Local realism, contextualism and loopholes in Bell's experiments, ; A. Khrennikov, I. V. Volovich, “Quantum nonlocality, EPR model and Bell's theorem”, Proc. III Int. Sakharov Conf. on Physics, V. II, eds. A. Semikhatov, M. Vasiliev, V. Zaikin, World Sci., Singapore, 2003, 260–267 arXiv: quant-ph/0203030arXiv: quant-ph/0212127 | MR

[7] A. Yu. Khrennikov, Nekolmogorovskie teorii veroyatnostei i kvantovaya fizika, Fizmatlit, M., 2003

[8] A. Boum, Kvantovaya mekhanika. Osnovy i prilozheniya, Mir, M., 1990 | MR | Zbl

[9] M. Nilsen, I. Chang, Kvantovye vychisleniya i kvantovaya informatsiya, Mir, M., 2006 | MR | Zbl

[10] M. Genovese, Phys. Rep., 413:6 (2005), 319–396 | DOI | MR

[11] A. Khrennikov, Bell's inequality: physics meets probability, arXiv: 0709.3909 | MR

[12] F. J. Belinfante, A Survey of Hidden-Variables Theories, Internat. Ser. Monogr. in Natural Philosophy, 55, Pergamon Press, Oxford, 1973 | MR

[13] S. J. Freedman, J. F. Clauser, Phys. Rev. Lett., 28:14 (1972), 938–941 | DOI

[14] A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett., 47:7 (1981), 460–463 | DOI

[15] A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett., 49:2 (1982), 91–94 | DOI

[16] A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett., 49:25 (1982), 1804–1807 | DOI | MR

[17] Z. Y. Ou, L. Mandel, Phys. Rev. Lett., 61:1 (1988), 50–53 | DOI | MR

[18] T. E. Kiess, Y. H. Shih, A. V. Sergienko, C. O. Alley, Phys. Rev. Lett., 71:24 (1993), 3893–3897 | DOI

[19] M. Kupczynski, Phys. Lett. A, 121:2 (1987), 51–53 ; J. Russ. Laser Res., 26:6 (2005), 514–523 | DOI | DOI

[20] A. V. Belinskii, D. N. Klyshko, UFN, 163:8 (1993), 1–45 | DOI

[21] V. A. Andreev, V. I. Manko, Pisma v ZhETF, 72:2 (2000), 130–135 ; V. A. Andreev, V. I. Man'ko, Phys. Lett. A, 281:5–6 (2001), 278–288 | DOI | DOI | MR | Zbl

[22] V. A. Andreev, TMF, 152:3 (2007), 488–501 | DOI | MR | Zbl