Fractional generalization of the quantum Markovian master equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 2, pp. 214-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a generalization of the quantum Markovian equation for observables. In this generalized equation, we use superoperators that are fractional powers of completely dissipative superoperators. We prove that the suggested superoperators are infinitesimal generators of completely positive semigroups and describe the properties of this semigroup. We solve the proposed fractional quantum Markovian equation for the harmonic oscillator with linear friction. A fractional power of the Markovian superoperator can be considered a parameter describing a measure of "screening" of the environment of the quantum system: the environmental influence on the system is absent for $\alpha=0$, the environment completely influences the system for $\alpha=1$, and we have a powerlike environmental influence for $0<\alpha<1$.
Keywords: fractional power of an operator, non-Hamiltonian quantum system, completely positive semigroup.
Mots-clés : quantum Markovian equation
@article{TMF_2009_158_2_a3,
     author = {V. E. Tarasov},
     title = {Fractional generalization of the~quantum {Markovian} master equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {214--233},
     year = {2009},
     volume = {158},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a3/}
}
TY  - JOUR
AU  - V. E. Tarasov
TI  - Fractional generalization of the quantum Markovian master equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 214
EP  - 233
VL  - 158
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a3/
LA  - ru
ID  - TMF_2009_158_2_a3
ER  - 
%0 Journal Article
%A V. E. Tarasov
%T Fractional generalization of the quantum Markovian master equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 214-233
%V 158
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a3/
%G ru
%F TMF_2009_158_2_a3
V. E. Tarasov. Fractional generalization of the quantum Markovian master equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 2, pp. 214-233. http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a3/

[1] K. B. Oldham, J. Spanier, The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order, Math. Sci. Eng., 111, Academic Press, New York, 1974 | MR | Zbl

[2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, New York, 1993 | MR | Zbl

[3] B. Ross, “A brief history and exposition of the fundamental theory of fractional calculus”, Fractional Calculus and Its Applications, Lecture Notes in Math., 457, Springer, Berlin, 1975, 1–36 | DOI | Zbl

[4] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993 | MR | Zbl

[5] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Math. Sci. Eng., 198, Academic Press, San Diego, 1999 | MR | Zbl

[6] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Application of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 | MR | Zbl

[7] V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes Math. Ser., 301, Longman Scientific and Technical, Harlow, 1993 ; B. Rubin, Fractional Integrals and Potentials, Pitman Monogr. Surv. Pure Appl. Math., 82, Harlow, Longman, 1996 ; A. C. McBride, Fractional Calculus and Integral Transforms of Generalized Functions, Research Notes Math., 31, Pitman, San Francisco, 1979 | MR | Zbl | MR | Zbl | MR | Zbl

[8] K. Nishimoto, Fractional Calculus. Integrations and Differentiations of Arbitrary Order, Descartes Press, Koriyama, 1989 | MR | Zbl

[9] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford Univ. Press, Oxford, 2005 | MR | Zbl

[10] R. Gorenflo, F. Mainardi, “Fractional calculus: integral and differential equations of fractional order”, Fractals and Fractional Calculus in Continuum Mechanics, CISM Courses and Lectures, 378, eds. A. Carpinteri, F. Mainardi, Springer, Wien, 1997, 223–276 | MR | Zbl

[11] B. West, M. Bologna, P. Grigolini, Physics of Fractal Operators, Inst. Nonlinear Sci., Springer, New York, 2003 | DOI | MR

[12] R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000 | MR | Zbl

[13] G. M. Zaslavsky, Phys. Rep., 371:6 (2002), 461–580 | DOI | MR | Zbl

[14] E. W. Montroll, M. F. Shlesinger, “On the wonderful world of random walks”, Nonequilibrium Phenomena. II. From Stochastics to Hydrodynamics, Stud. Statist. Mech., 11, eds. J. Lebowitz, E. Montroll, North-Holland, Amsterdam, 1984, 1–121 | MR | Zbl

[15] R. Metzler, J. Klafter, Phys. Rep., 339:1 (2000), 1–77 | DOI | MR | Zbl

[16] R. Metzler, J. Klafter, J. Phys. A, 37:31 (2004), R161–R208 | DOI | MR | Zbl

[17] V. E. Tarasov, Internat. J. Math., 18:3 (2007), 281–299 | DOI | MR | Zbl

[18] V. E. Tarasov, Phys. Lett. A, 17 (2008), 2984–2988 | DOI | MR | Zbl

[19] V. E. Tarasov, J. Phys. A, 38:26 (2005), 5929–5943 | DOI | MR | Zbl

[20] V. E. Tarasov, J. Phys. A, 39:26 (2006), 8409–8425 | DOI | MR | Zbl

[21] A. Kossakowski, Rep. Math. Phys., 3:4 (1972), 247–274 | DOI | MR

[22] E. B. Davies, Quantum Theory of Open Systems, Academic Press, London, New York, San Francisco, 1976 | MR | Zbl

[23] R. S. Ingarden, A. Kossakowski, Ann. Phys., 89:2 (1975), 451–485 | DOI | MR

[24] V. E. Tarasov, Quantum Mechanics of Non-Hamiltonian and Dissipative Systems, Elsevier, Amsterdam, London, 2008 | MR | Zbl

[25] K.-E. Hellwing, K. Kraus, Comm. Math. Phys., 11:3 (1969), 214–220 | DOI | MR | Zbl

[26] K.-E. Hellwing, K. Kraus, Comm. Math. Phys., 16:2 (1970), 142–147 | DOI | MR | Zbl

[27] K. Kraus, Ann. Phys., 64:2 (1971), 311–335 | DOI | MR | Zbl

[28] K. Kraus, States, Effects, and Operations. Fundamental Notions of Quantum Theory, Lecture Notes in Phys., 190, Springer, Berlin, 1983 | DOI | MR | Zbl

[29] B. Schumacher, Phys. Rev. A, 54:4 (1996), 2614–2628 | DOI

[30] V. E. Tarasov, J. Phys. A, 35:25 (2002), 5207–5235 | DOI | MR | Zbl

[31] V. E. Tarasov, J. Phys. A, 37:9 (2004), 3241–3257 | DOI | MR | Zbl

[32] L. Accardi, Y. G. Lu, I. V. Volovich, Quantum Theory and Its Stochastic Limit, Springer, New York, 2002 | MR | Zbl

[33] U. Weiss, Quantum Dissipative Systems, Ser. Modern Condensed Matter Phys., 2, World Scientific, Singapore, 1993 | Zbl

[34] V. Gorini, A. Kossakowski, E. C. G. Sudarshan, J. Math. Phys., 17:5 (1976), 821–825 | DOI | MR

[35] V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, E. C. G. Sudarshan, Rep. Math. Phys., 13:2 (1978), 149–173 | DOI | MR | Zbl

[36] G. Lindblad, Comm. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl

[37] G. Lindblad, Rep. Math. Phys., 10:3 (1976), 393–406 | DOI | MR | Zbl

[38] A. Sandulescu, H. Scutaru, Ann. Phys., 173:2 (1987), 277–317 | DOI | MR

[39] A. Isar, A. Sandulescu, H. Scutaru, E. Stefanescu, W. Scheid, Internat. J. Modern Phys. E, 3:2 (1994), 635–714 | DOI | MR

[40] A. Isar, A. Sandulescu, W. Scheid, Internat. J. Modern Phys. E, 10:22 (1996), 2767–2779 | DOI | MR | Zbl

[41] E. B. Davies, Ann. Inst. H. Poincarè Sect. A, 35:2 (1981), 149–171 | MR | Zbl

[42] D. A. Lidar, Z. Bihary, K. B. Whaley, Chem. Phys., 268:1–3 (2001), 35–53 | DOI

[43] H. Nakazato, Y. Hida, K. Yuasa, B. Militello, A. Napoli, A. Messina, Phys. Rev. A, 74:6 (2006), 062113 | DOI | MR

[44] K. Dietz, J. Phys. A, 35:49 (2002), 10573–10590 | DOI | MR | Zbl

[45] V. E. Tarasov, Phys. Rev. E, 66:5 (2002), 056116 | DOI | MR

[46] E. B. Davies, Comm. Math. Phys., 19:2 (1970), 83–105 | DOI | MR | Zbl

[47] H. Spohn, Rep. Math. Phys., 10:2 (1976), 189–194 | DOI | MR

[48] H. Spohn, Lett. Math. Phys., 2:1 (1977), 33–38 | DOI | MR | Zbl

[49] C. Anastopoulous, J. J. Halliwell, Phys. Rev. D, 51:12 (1995), 6870–6885 | DOI | MR

[50] V. E. Tarasov, G. M. Zaslavsky, Physica A, 368:2 (2006), 399–415 | DOI

[51] A. Tofighi, H. N. Pour, Physica A, 374:1 (2007), 41–45 | DOI

[52] A. Tofighi, A. Golestani, Physica A, 387:8–9 (2008), 1807–1817 | DOI

[53] W. Arveson, Pacific J. Math., 203:1 (2002), 67–77 | DOI | MR | Zbl

[54] R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications, Lecture Notes in Phys., 286, Springer, Berlin, 1987 | MR | Zbl

[55] E. Hille, R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. Publ., 31, AMS, Providence, 1957 | MR | Zbl

[56] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR | Zbl

[57] E. B. Davies, Rep. Math. Phys., 11:2 (1977), 169–188 | DOI | MR | Zbl

[58] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. T. 1. Elementarnye funktsii, 2-e izd., Nauka, M., 2002 | MR | MR | Zbl

[59] A. I. Saichev, G. M. Zaslavsky, Chaos, 7:4 (1997), 753–764 | DOI | MR | Zbl

[60] V. E. Tarasov, G. M. Zaslavsky, Commun. Nonlinear Sci. Numer. Simul., 13:2 (2008), 248–258 | DOI | MR | Zbl

[61] V. V. Yanovsky, A. V. Chechkin, D. Schertzer, A. V. Tur, Physica A, 282:1–2 (2000), 13–34 | DOI