Quasilevels of a two-particle Schrödinger operator with a perturbed periodic potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 115-125
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a two-dimensional periodic Schrödinger operator perturbed by the interaction potential of two one-dimensional particles. We prove that quasilevels (i.e., eigenvalues or resonances) of the given operator exist for a fixed quasimomentum and a small perturbation near the band boundaries of the corresponding periodic operator. We study the asymptotic behavior of the quasilevels as the coupling constant goes to zero. We obtain a simple condition for a quasilevel to be an eigenvalue.
Keywords: two-particle Schrödinger operator, periodic potential, eigenvalue, resonance.
@article{TMF_2009_158_1_a6,
     author = {Yu. P. Chuburin},
     title = {Quasilevels of a~two-particle {Schr\"odinger} operator with a~perturbed periodic potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {115--125},
     year = {2009},
     volume = {158},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a6/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
TI  - Quasilevels of a two-particle Schrödinger operator with a perturbed periodic potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 115
EP  - 125
VL  - 158
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a6/
LA  - ru
ID  - TMF_2009_158_1_a6
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%T Quasilevels of a two-particle Schrödinger operator with a perturbed periodic potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 115-125
%V 158
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a6/
%G ru
%F TMF_2009_158_1_a6
Yu. P. Chuburin. Quasilevels of a two-particle Schrödinger operator with a perturbed periodic potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 115-125. http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a6/

[1] S. M. Mahajan, A. Thyagaraja, J. Phys. A, 39:47 (2006), 667–671 | DOI | MR | Zbl

[2] G. V. Volf, Yu. P. Chuburin, FTT, 47:6 (2005), 1015–1018 | DOI | MR

[3] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl

[4] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR | MR | Zbl

[5] Yu. P. Chuburin, TMF, 110:3 (1997), 443–453 | DOI | MR | Zbl

[6] R. Ganning, Kh. Rossi, Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR | MR | Zbl

[7] Yu. P. Chuburin, TMF, 98:1 (1994), 38–47 | DOI | MR | Zbl