Geometric torsions and invariants of manifolds with a triangulated boundary
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 98-114
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Geometric torsions are torsions of acyclic complexes of vector spaces consisting of differentials of geometric quantities assigned to the elements of a manifold triangulation. We use geometric torsions to construct invariants for a three-dimensional manifold with a triangulated boundary. These invariants can be naturally combined into a vector, and a change of the boundary triangulation corresponds to a linear transformation of this vector. Moreover, when two manifolds are glued at their common boundary, these vectors undergo scalar multiplication, i.e., they satisfy Atiyah's axioms of a topological quantum field theory.
Keywords: topological quantum field theory, Atiyah's axioms, geometric acyclic complex.
@article{TMF_2009_158_1_a5,
     author = {I. G. Korepanov},
     title = {Geometric torsions and invariants of manifolds with a~triangulated boundary},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {98--114},
     year = {2009},
     volume = {158},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a5/}
}
TY  - JOUR
AU  - I. G. Korepanov
TI  - Geometric torsions and invariants of manifolds with a triangulated boundary
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 98
EP  - 114
VL  - 158
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a5/
LA  - ru
ID  - TMF_2009_158_1_a5
ER  - 
%0 Journal Article
%A I. G. Korepanov
%T Geometric torsions and invariants of manifolds with a triangulated boundary
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 98-114
%V 158
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a5/
%G ru
%F TMF_2009_158_1_a5
I. G. Korepanov. Geometric torsions and invariants of manifolds with a triangulated boundary. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 98-114. http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a5/

[1] M. F. Atiyah, Publ. Math. IHES, 68 (1988), 175–186 | DOI | MR | Zbl

[2] M. Atya, Geometriya i fizika uzlov, Mir, M., 1995 | MR | MR | Zbl

[3] I. G. Korepanov, J. Nonlinear Math. Phys., 8:2 (2001), 196–210 | DOI | MR | Zbl

[4] I. G. Korepanov, TMF, 133:1 (2002), 24–35 | DOI | MR | Zbl

[5] I. G. Korepanov, TMF, 135:2 (2003), 179–195 | DOI | MR | Zbl

[6] I. G. Korepanov, E. V. Martyushev, J. Nonlinear Math. Phys., 9:1 (2002), 86–98 | DOI | MR | Zbl

[7] E. V. Martyushev, Izv. Chelyabinskogo nauch. tsentra UrO RAN, 2003, no. 2(19), 1–5 | MR

[8] E. V. Martyushev, Izv. Chelyabinskogo nauch. tsentra UrO RAN, 2004, no. 4(26), 1–5 | MR

[9] E. V. Martyushev, Geometricheskie invarianty trekhmernykh mnogoobrazii, uzlov i zatseplenii, Disc. ... kand. fiz.-matem. nauk, Yuzhno-Uralskii gos. un-t, Chelyabinsk, 2007

[10] J. Dubois, I. G. Korepanov, E. V. Martyushev, Euclidean geometric invariant of framed knots in manifolds, arXiv: math/0605164 | MR

[11] I. G. Korepanov, TMF, 131:3 (2002), 377–388 | DOI | MR | Zbl

[12] V. G. Turaev, Vvedenie v kombinatornye krucheniya, MTsNMO, M., 2004 | MR | Zbl

[13] R. M. Kashaev, I. G. Korepanov, E. V. Martyushev, A finite-dimensional TQFT for three-manifolds based on group $\mathrm{PSL}(2,\mathbb C)$ and cross-ratios, arXiv: 0809.4239

[14] R. M. Kashaev, Chastnoe soobschenie, 2007

[15] V. V. Prasolov, Zadachi i teoremy lineinoi algebry, Nauka, M., 1996 | MR | Zbl

[16] J. J. Sylvester, Philos. Magaz., Fourth Ser., 1 (1851), 295–305 | Zbl

[17] R. M. Kashaev, I. G. Korepanov, S. M. Sergeev, TMF, 117:3 (1998), 370–384 | DOI | MR | Zbl