@article{TMF_2009_158_1_a5,
author = {I. G. Korepanov},
title = {Geometric torsions and invariants of manifolds with a~triangulated boundary},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {98--114},
year = {2009},
volume = {158},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a5/}
}
I. G. Korepanov. Geometric torsions and invariants of manifolds with a triangulated boundary. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 98-114. http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a5/
[1] M. F. Atiyah, Publ. Math. IHES, 68 (1988), 175–186 | DOI | MR | Zbl
[2] M. Atya, Geometriya i fizika uzlov, Mir, M., 1995 | MR | MR | Zbl
[3] I. G. Korepanov, J. Nonlinear Math. Phys., 8:2 (2001), 196–210 | DOI | MR | Zbl
[4] I. G. Korepanov, TMF, 133:1 (2002), 24–35 | DOI | MR | Zbl
[5] I. G. Korepanov, TMF, 135:2 (2003), 179–195 | DOI | MR | Zbl
[6] I. G. Korepanov, E. V. Martyushev, J. Nonlinear Math. Phys., 9:1 (2002), 86–98 | DOI | MR | Zbl
[7] E. V. Martyushev, Izv. Chelyabinskogo nauch. tsentra UrO RAN, 2003, no. 2(19), 1–5 | MR
[8] E. V. Martyushev, Izv. Chelyabinskogo nauch. tsentra UrO RAN, 2004, no. 4(26), 1–5 | MR
[9] E. V. Martyushev, Geometricheskie invarianty trekhmernykh mnogoobrazii, uzlov i zatseplenii, Disc. ... kand. fiz.-matem. nauk, Yuzhno-Uralskii gos. un-t, Chelyabinsk, 2007
[10] J. Dubois, I. G. Korepanov, E. V. Martyushev, Euclidean geometric invariant of framed knots in manifolds, arXiv: math/0605164 | MR
[11] I. G. Korepanov, TMF, 131:3 (2002), 377–388 | DOI | MR | Zbl
[12] V. G. Turaev, Vvedenie v kombinatornye krucheniya, MTsNMO, M., 2004 | MR | Zbl
[13] R. M. Kashaev, I. G. Korepanov, E. V. Martyushev, A finite-dimensional TQFT for three-manifolds based on group $\mathrm{PSL}(2,\mathbb C)$ and cross-ratios, arXiv: 0809.4239
[14] R. M. Kashaev, Chastnoe soobschenie, 2007
[15] V. V. Prasolov, Zadachi i teoremy lineinoi algebry, Nauka, M., 1996 | MR | Zbl
[16] J. J. Sylvester, Philos. Magaz., Fourth Ser., 1 (1851), 295–305 | Zbl
[17] R. M. Kashaev, I. G. Korepanov, S. M. Sergeev, TMF, 117:3 (1998), 370–384 | DOI | MR | Zbl