@article{TMF_2009_158_1_a4,
author = {P. I. Dunin-Barkovskii and A. V. Sleptsov},
title = {Geometric {Hamiltonian} formalism for reparameterization-invariant theories with higher derivatives},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {72--97},
year = {2009},
volume = {158},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a4/}
}
TY - JOUR AU - P. I. Dunin-Barkovskii AU - A. V. Sleptsov TI - Geometric Hamiltonian formalism for reparameterization-invariant theories with higher derivatives JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2009 SP - 72 EP - 97 VL - 158 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a4/ LA - ru ID - TMF_2009_158_1_a4 ER -
%0 Journal Article %A P. I. Dunin-Barkovskii %A A. V. Sleptsov %T Geometric Hamiltonian formalism for reparameterization-invariant theories with higher derivatives %J Teoretičeskaâ i matematičeskaâ fizika %D 2009 %P 72-97 %V 158 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a4/ %G ru %F TMF_2009_158_1_a4
P. I. Dunin-Barkovskii; A. V. Sleptsov. Geometric Hamiltonian formalism for reparameterization-invariant theories with higher derivatives. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 72-97. http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a4/
[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Editorial URSS, M., 2003 | MR | MR | Zbl
[2] V. I. Arnold, A. B. Givental, Simplekticheskaya geometriya, RKhD, Izhevsk, 2000 | MR | MR | Zbl
[3] A. Kushner, V. Lychagin, V. Rubtsov, Contact Geometry and Nonlinear Differential Equations, Encyclopedia Math. Appl., 101, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl
[4] R. Miron, D. Hrimiuc, H. Shimada, S. V. Sabau, The Geometry of Hamilton and Lagrange Spaces, Fund. Theories Phys., 118, Kluwer, Dordrecht, 2001 | MR | Zbl
[5] A. Morozov, Hamiltonian formalism in the presence of higher derivatives, arXiv: 0712.0946
[6] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya. T. 2. Geometriya i topologiya mnogoobrazii, Editorial URSS, M., 2001 | MR | MR | Zbl
[7] D. M. Gitman, I. V. Tyutin, Kanonicheskoe kvantovanie polei so svyazyami, Nauka, M., 1986 | MR | MR | Zbl
[8] D. Fairlie, J. Govaerts, A. Morozov, Nucl. Phys. B, 373:1 (1992), 214–232 ; arXiv: hep-th/9110022 | DOI | MR
[9] L. Takhtajan, Comm. Math. Phys., 160:2 (1994), 295–315 ; arXiv: hep-th/9301111 | DOI | MR | Zbl
[10] T. Curtright, C. Zachos, Phys. Rev. D, 68 (2003), 085001 ; arXiv: hep-th/0212267 | DOI
[11] C. Rovelli, Quantum Gravity, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, 2004 | MR | Zbl
[12] J. Muñoz Masqué, L. M. Pozo Coronado, J. Phys. A, 31:29 (1998), 6225–6242 | DOI | MR | Zbl
[13] A. D. Mironov, A. Yu. Morozov, TMF, 156:2 (2008), 282–291 ; arXiv: hep-th/0703097 | DOI | MR | Zbl
[14] A. Mironov, A. Morozov, On the problem of radiation friction beyond 4 and 6 dimensions, arXiv: 0710.5676
[15] D. Galakhov, Pisma v ZhETF, 87:8 (2008), 522–527 ; arXiv: 0710.5688 | DOI
[16] M. S. Plyushchay, Internat. J. Modern Phys. A, 4:15 (1989), 3851–3865 | DOI | MR
[17] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. II. Teoriya polya, Fizmatlit, M., 2001 | MR | MR | Zbl