Geometric Hamiltonian formalism for reparameterization-invariant theories with higher derivatives
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 72-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider reparameterization-invariant Lagrangian theories with higher derivatives, investigate the geometric structures behind these theories, and construct the Hamiltonian formalism geometrically. We present the Legendre transformation formula for such systems, which differs from the usual one. We show that the phase bundle, i.e., the image of the Legendre transformation, is a submanifold of a certain cotangent bundle, and this submanifold is always odd-dimensional in this construction. Therefore, the canonical symplectic 2-form of the ambient cotangent bundle generates a field on the phase bundle of null directions of its restriction. We show that the integral lines of this field project to the extremals of the action on the configuration manifold. This means that the obtained field is a Hamiltonian field. We write the corresponding Hamilton equations in terms of the generalized Nambu bracket.
Keywords: Hamiltonian formalism, higher-order tangent bundle, Nambu bracket, reparameterization invariance.
@article{TMF_2009_158_1_a4,
     author = {P. I. Dunin-Barkovskii and A. V. Sleptsov},
     title = {Geometric {Hamiltonian} formalism for reparameterization-invariant theories with higher derivatives},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {72--97},
     year = {2009},
     volume = {158},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a4/}
}
TY  - JOUR
AU  - P. I. Dunin-Barkovskii
AU  - A. V. Sleptsov
TI  - Geometric Hamiltonian formalism for reparameterization-invariant theories with higher derivatives
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 72
EP  - 97
VL  - 158
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a4/
LA  - ru
ID  - TMF_2009_158_1_a4
ER  - 
%0 Journal Article
%A P. I. Dunin-Barkovskii
%A A. V. Sleptsov
%T Geometric Hamiltonian formalism for reparameterization-invariant theories with higher derivatives
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 72-97
%V 158
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a4/
%G ru
%F TMF_2009_158_1_a4
P. I. Dunin-Barkovskii; A. V. Sleptsov. Geometric Hamiltonian formalism for reparameterization-invariant theories with higher derivatives. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 72-97. http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a4/

[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Editorial URSS, M., 2003 | MR | MR | Zbl

[2] V. I. Arnold, A. B. Givental, Simplekticheskaya geometriya, RKhD, Izhevsk, 2000 | MR | MR | Zbl

[3] A. Kushner, V. Lychagin, V. Rubtsov, Contact Geometry and Nonlinear Differential Equations, Encyclopedia Math. Appl., 101, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl

[4] R. Miron, D. Hrimiuc, H. Shimada, S. V. Sabau, The Geometry of Hamilton and Lagrange Spaces, Fund. Theories Phys., 118, Kluwer, Dordrecht, 2001 | MR | Zbl

[5] A. Morozov, Hamiltonian formalism in the presence of higher derivatives, arXiv: 0712.0946

[6] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya. T. 2. Geometriya i topologiya mnogoobrazii, Editorial URSS, M., 2001 | MR | MR | Zbl

[7] D. M. Gitman, I. V. Tyutin, Kanonicheskoe kvantovanie polei so svyazyami, Nauka, M., 1986 | MR | MR | Zbl

[8] D. Fairlie, J. Govaerts, A. Morozov, Nucl. Phys. B, 373:1 (1992), 214–232 ; arXiv: hep-th/9110022 | DOI | MR

[9] L. Takhtajan, Comm. Math. Phys., 160:2 (1994), 295–315 ; arXiv: hep-th/9301111 | DOI | MR | Zbl

[10] T. Curtright, C. Zachos, Phys. Rev. D, 68 (2003), 085001 ; arXiv: hep-th/0212267 | DOI

[11] C. Rovelli, Quantum Gravity, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, 2004 | MR | Zbl

[12] J. Muñoz Masqué, L. M. Pozo Coronado, J. Phys. A, 31:29 (1998), 6225–6242 | DOI | MR | Zbl

[13] A. D. Mironov, A. Yu. Morozov, TMF, 156:2 (2008), 282–291 ; arXiv: hep-th/0703097 | DOI | MR | Zbl

[14] A. Mironov, A. Morozov, On the problem of radiation friction beyond 4 and 6 dimensions, arXiv: 0710.5676

[15] D. Galakhov, Pisma v ZhETF, 87:8 (2008), 522–527 ; arXiv: 0710.5688 | DOI

[16] M. S. Plyushchay, Internat. J. Modern Phys. A, 4:15 (1989), 3851–3865 | DOI | MR

[17] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. II. Teoriya polya, Fizmatlit, M., 2001 | MR | MR | Zbl