Approximation of a point perturbation on a Riemannian manifold
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 49-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the Hamiltonian of point interaction on a Riemannian manifold with bounded geometry can be obtained as a limit (in the sense of uniform resolvent convergence) of a sequence of scaling Hamiltonians with short-range interaction.
Keywords: Riemannian manifold, point interaction, approximation.
@article{TMF_2009_158_1_a2,
     author = {V. A. Geiler and D. A. Ivanov and I. Yu. Popov},
     title = {Approximation of a~point perturbation on {a~Riemannian} manifold},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {49--57},
     year = {2009},
     volume = {158},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a2/}
}
TY  - JOUR
AU  - V. A. Geiler
AU  - D. A. Ivanov
AU  - I. Yu. Popov
TI  - Approximation of a point perturbation on a Riemannian manifold
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 49
EP  - 57
VL  - 158
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a2/
LA  - ru
ID  - TMF_2009_158_1_a2
ER  - 
%0 Journal Article
%A V. A. Geiler
%A D. A. Ivanov
%A I. Yu. Popov
%T Approximation of a point perturbation on a Riemannian manifold
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 49-57
%V 158
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a2/
%G ru
%F TMF_2009_158_1_a2
V. A. Geiler; D. A. Ivanov; I. Yu. Popov. Approximation of a point perturbation on a Riemannian manifold. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 49-57. http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a2/

[1] R. de L. Kronig, W. G. Penney, Proc. R. Soc. Lond. Ser. A, 130:814 (1931), 499–513 | DOI | Zbl

[2] F. A. Berezin, L. D. Faddeev, DAN SSSR, 137 (1961), 1011–1014 | MR | Zbl

[3] S. Albeverio, F. Gestezi, R. Kheeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR | MR | Zbl

[4] A. V. Chaplik, L. I. Magarill, D. A. Romanov, Phys. B, 249–251 (1998), 377–382 | DOI

[5] V. V. Gritsev, Yu. A. Kurochkin, Phys. Rev. B, 64:3 (2001), 035308 | DOI

[6] I. V. Krive, S. Naftulin, A. S. Rozhavsky, Ann. Phys., 232:2 (1994), 225–242 | DOI | MR

[7] L. P. Nizhnik, Ukr. matem. zhurn., 49:11 (1997), 1557–1560 | MR | Zbl

[8] M. A. Shubin, “Spectral theory of elliptic operators on noncompact manifolds”, Méthodes semi-classiques, V. 1, Astérisque, 207, ed. D. Robert, Soc. Mat. France, Paris, 1992, 35–108 | MR | Zbl

[9] J. Brüning, V. Geyler, K. Pankrashkin, Ann. Henri Poincaré, 8:4 (2007), 781–816 | DOI | MR | Zbl

[10] M. Berger, A Panoramic View of Riemannian Geometry, Springer, Berlin, 2003 | MR | Zbl

[11] C. Groshe, F. Steiner, Handbook of Feynman Path Integrals, Springer Tracts Modern Phys., 145, Springer, Berlin, 1998 | MR | Zbl

[12] J. Brüning, V. Geyler, V. Pankrashkin, J. Math. Phys, 46:11 (2005), 113508 | DOI | MR | Zbl

[13] B. S. Pavlov, UMN, 42:6(258) (1987), 99–131 | DOI | MR | Zbl

[14] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | MR | Zbl