Approximation of a~point perturbation on a~Riemannian manifold
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 49-57

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the Hamiltonian of point interaction on a Riemannian manifold with bounded geometry can be obtained as a limit (in the sense of uniform resolvent convergence) of a sequence of scaling Hamiltonians with short-range interaction.
Keywords: Riemannian manifold, point interaction, approximation.
@article{TMF_2009_158_1_a2,
     author = {V. A. Geiler and D. A. Ivanov and I. Yu. Popov},
     title = {Approximation of a~point perturbation on {a~Riemannian} manifold},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {49--57},
     publisher = {mathdoc},
     volume = {158},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a2/}
}
TY  - JOUR
AU  - V. A. Geiler
AU  - D. A. Ivanov
AU  - I. Yu. Popov
TI  - Approximation of a~point perturbation on a~Riemannian manifold
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 49
EP  - 57
VL  - 158
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a2/
LA  - ru
ID  - TMF_2009_158_1_a2
ER  - 
%0 Journal Article
%A V. A. Geiler
%A D. A. Ivanov
%A I. Yu. Popov
%T Approximation of a~point perturbation on a~Riemannian manifold
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 49-57
%V 158
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a2/
%G ru
%F TMF_2009_158_1_a2
V. A. Geiler; D. A. Ivanov; I. Yu. Popov. Approximation of a~point perturbation on a~Riemannian manifold. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 49-57. http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a2/