Fermionic approach for evaluating integrals of rational symmetric functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 23-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the fermionic construction of two-matrix model partition functions to evaluate integrals over rational symmetric functions. This approach is complementary to the one used in our previous paper, where these integrals were evaluated by a direct method. Using Wick's theorem, we obtain the same determinantal expressions in terms of biorthogonal polynomials.
Mots-clés : random matrix, free fermion.
Keywords: two-matrix model, multiple integral, factorization, dressing method, characteristic polynomial
@article{TMF_2009_158_1_a1,
     author = {J. Harnad and A. Yu. Orlov},
     title = {Fermionic approach for evaluating integrals of rational symmetric functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {23--48},
     year = {2009},
     volume = {158},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a1/}
}
TY  - JOUR
AU  - J. Harnad
AU  - A. Yu. Orlov
TI  - Fermionic approach for evaluating integrals of rational symmetric functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 23
EP  - 48
VL  - 158
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a1/
LA  - ru
ID  - TMF_2009_158_1_a1
ER  - 
%0 Journal Article
%A J. Harnad
%A A. Yu. Orlov
%T Fermionic approach for evaluating integrals of rational symmetric functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 23-48
%V 158
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a1/
%G ru
%F TMF_2009_158_1_a1
J. Harnad; A. Yu. Orlov. Fermionic approach for evaluating integrals of rational symmetric functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 23-48. http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a1/

[1] L.-L. Chau, O. Zaboronsky, Comm. Math. Phys., 196:1 (1998), 203–247 ; arXiv: hep-th/9711091 | DOI | MR | Zbl

[2] M. L. Mehta, Random Matrices, Academic Press, Boston, 1991 | MR | Zbl

[3] V. B. Uvarov, ZhVM i MF, 9 (1969), 1253–1262 | DOI | MR | Zbl

[4] E. Brézin, S. Hikami, Comm. Math. Phys., 214:1 (2000), 111–135 | DOI | MR | Zbl

[5] Y. V. Fyodorov, E. Strahov, J. Phys. A, 36:12 (2003), 3203–3213 | DOI | MR | Zbl

[6] G. Akemann, G. Vernizzi, Nucl. Phys. B, 660:3 (2003), 532–556 | DOI | MR | Zbl

[7] J. Baik, P. Deift, E. Strahov, J. Math. Phys., 44:8 (2003), 3657–3670 ; arXiv: math-ph/0304016 | DOI | MR | Zbl

[8] C. Itzykson, J.-B. Zuber, J. Math. Phys., 21:3 (1980), 411–421 | DOI | MR | Zbl

[9] M. Bergère, Biorthogonal polynomials for potentials of two variables and external sources at the denominator, arXiv: hep-th/0404126

[10] J. Harnad, A. Yu. Orlov, Integrals of rational symmetric functions, two-matrix models and biorthogonal polynomials, arXiv: math-ph/0603040

[11] J. Harnad, A. Yu. Orlov, J. Phys. A, 39:28 (2006), 8783–8809 ; arXiv: math-phys/0512056 | DOI | MR | Zbl

[12] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, 1981), eds. M. Jimbo, T. Miwa, World Scientific, Singapore, 1983, 39–119 | MR | Zbl

[13] S. Kharchev, A. Marshakov, A. Mironov et al., Nucl. Phys. B, 404:3 (1993), 717–750 ; arXiv: hep-th/9208044 | DOI | MR | Zbl

[14] S. Kharchev, A. Marshakov, A. Mironov et al., Nucl. Phys. B, 366:3 (1991), 569–601 | DOI | MR

[15] D. Kharnad, A. Yu. Orlov, TMF, 137:3 (2003), 375–392 | DOI | MR

[16] J. Harnad, A. Yu. Orlov, “Matrix integrals as Borel sums of Schur function expansions”, Symmetry and Perturbation Theory, Proc. Internat. Conf. SPT 2002, eds. S. Abenda, G. Gaeta, World Scientific, Singapore, 2003, 116–123 | DOI | MR

[17] M. Jimbo, T. Miwa, Publ. RIMS Kyoto Univ., 19:3 (1983), 943–1001 | DOI | MR | Zbl

[18] A. Gerasimov, A. Marshakov, A. Mironov et al., Nucl. Phys. B, 357:2–3 (1991), 565–618 | DOI | MR

[19] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl

[20] A. V. Mikhailov, Pisma v ZhETF, 30:7 (1979), 443–448

[21] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations, Proc. Symp. (Tokyo, 1982), Adv. Stud. Pure Math., 4, ed. K. Okamoto, North-Holland, Amsterdam, 1984, 1–95 | MR | Zbl

[22] P. G. Grinevich, A. Yu. Orlov, Flag spaces in KP theory and Virasoro action on $\det D_j$ and Segal–Wilson $\tau$-function, ; “Virasoro Action on Riemann Surfaces, Grassmannians, $\det\bar\partial_j$ and Segal–Wilson $\tau$-function”, Problems of Modern Quantum Field Theory, Res. Rep. Phys., eds. A. A. Belavin, A. U. Klimyk, A. B. Zamolodchikov, Springer, Berlin, 1989, 86–106 arXiv: math-ph/9804019 | MR | DOI

[23] P. Zinn-Justin, J.-B. Zuber, J. Phys. A, 36:12 (2003), 3173–3193 ; arXiv: math-ph/0209019 | DOI | MR | Zbl

[24] A. Yu. Orlov, Internat. J. Modern Phys. A, 19, Suppl. 2 (2004), 276–293 ; arXiv: nlin.SI/0209063 | DOI | MR | Zbl

[25] A. Yu. Orlov, T. Shiota, Phys. Lett. A, 343:5 (2005), 384–396 | DOI | MR | Zbl

[26] Dzh. Kharnad, A. Yu. Orlov, TMF, 152:2 (2007), 265–277 | DOI | MR | Zbl

[27] V. G. Kac, J. W. van de Leur, “The $n$-component $KP$ hierarchy and representation theory”, Important Developments in Soliton Theory, Springer Ser. Nonlinear Dynam., eds. A. S. Fokas, V. E. Zakharov, Springer, Berlin, 1993, 302–343 | DOI | MR | Zbl

[28] P. G. Grinevich, A. Yu. Orlov, Funkts. analiz i ego pril., 24:1 (1990), 72–73 | DOI | MR | Zbl