Lagrangian tori in the projective plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 3-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We extend the discussion of the homological mirror symmetry for toric manifolds to the more general case of monotonic symplectic manifolds with real polarizations. We claim that the Hori–Vafa conjecture, proved for toric Fano varieties, can be verified in a much wider context. Then the Bohr–Sommerfeld notion regarding the canonical class Lagrangian submanifold appears and plays an important role. A bridge is thus manifested between the geometric quantization and homological mirror symmetry programs for the projective plane in terms of its Lagrangian geometry. This allows using standard facts from the theory of geometric quantization to obtain some results in the framework of the theory of homological mirror symmetry.
Keywords: Lagrangian torus, projective plane, Bohr–Sommerfeld condition.
@article{TMF_2009_158_1_a0,
     author = {N. A. Tyurin},
     title = {Lagrangian tori in the~projective plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--22},
     year = {2009},
     volume = {158},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a0/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Lagrangian tori in the projective plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 3
EP  - 22
VL  - 158
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a0/
LA  - ru
ID  - TMF_2009_158_1_a0
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Lagrangian tori in the projective plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 3-22
%V 158
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a0/
%G ru
%F TMF_2009_158_1_a0
N. A. Tyurin. Lagrangian tori in the projective plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a0/

[1] M. Kontsevich, “Homological algebra of mirror symmetry”, Proc. Internat. Congress Math., Zürich, V. 1, 2, ed. S. D. Chatterji, Birkhäuser, Basel, 1995, 120–139 | MR | Zbl

[2] K. Hori, C. Vafa, Mirror symmetry, arXiv: hep-th/0002222

[3] C.-H. Cho, Y.-G. Oh, Asian J. Math., 10:4 (2006), 773–814 | DOI | MR | Zbl

[4] V. Guillemin, S. Sternberg, Symplectic Technique in Physics, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[5] J. Śniatycki, Geometric Quantization and Quantum Mechanics, Appl. Math. Sci., 30, Springer, New York–Berlin, 1980 | DOI | MR | Zbl

[6] N. Woodhouse, Geometric Quantization, Oxford Math. Monogr., Clarendon Press, Oxford Univ. Press, Oxford–New York, 1980 | MR | Zbl

[7] N. Tyurin, “Geometric quantization and algebraic Lagrangian geometry”, Surveys in Geometry and Number Theory: Reports on Contemporary Russian Mathematics, London Math. Soc. Lecture Note Ser., 338, ed. N. Young, Cambridge Univ. Press, Cambridge, 2007, 279–318 | MR | Zbl

[8] A. Tyurin, Geometric quantization and mirror symmetry, arXiv: math/9902027

[9] A. Weinstein, Ann. of Math., 98:3 (1973), 377–410 | DOI | MR | Zbl

[10] N. A. Tyurin, TMF, 150:2 (2007), 325–337 | DOI | MR | Zbl

[11] C.-H. Cho, Holomorphic discs, spin structures and the Floer cohomology of the Clifford torus, PhD Thesis, Univ. of Wisconsin, Madison, 2003 ; Int. Math. Res. Not., 2004, no. 35, 1803–1843 | MR | DOI | MR | Zbl

[12] Yu. Chekanov, T. Schlenk, Lagrangian tori in projective spaces, in preparation

[13] D. Auroux, J. Gőkova Geom. Topol., 1 (2007), 51–91 ; arXiv: 0706.3207 | MR | Zbl

[14] S. Belev, Sobstvennye nelineinye kvantovye podsistemy standartnykh kvantovykh sistem, diplom bakalavra, OIYaI, Dubna, 2007