@article{TMF_2009_158_1_a0,
author = {N. A. Tyurin},
title = {Lagrangian tori in the~projective plane},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--22},
year = {2009},
volume = {158},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a0/}
}
N. A. Tyurin. Lagrangian tori in the projective plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TMF_2009_158_1_a0/
[1] M. Kontsevich, “Homological algebra of mirror symmetry”, Proc. Internat. Congress Math., Zürich, V. 1, 2, ed. S. D. Chatterji, Birkhäuser, Basel, 1995, 120–139 | MR | Zbl
[2] K. Hori, C. Vafa, Mirror symmetry, arXiv: hep-th/0002222
[3] C.-H. Cho, Y.-G. Oh, Asian J. Math., 10:4 (2006), 773–814 | DOI | MR | Zbl
[4] V. Guillemin, S. Sternberg, Symplectic Technique in Physics, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[5] J. Śniatycki, Geometric Quantization and Quantum Mechanics, Appl. Math. Sci., 30, Springer, New York–Berlin, 1980 | DOI | MR | Zbl
[6] N. Woodhouse, Geometric Quantization, Oxford Math. Monogr., Clarendon Press, Oxford Univ. Press, Oxford–New York, 1980 | MR | Zbl
[7] N. Tyurin, “Geometric quantization and algebraic Lagrangian geometry”, Surveys in Geometry and Number Theory: Reports on Contemporary Russian Mathematics, London Math. Soc. Lecture Note Ser., 338, ed. N. Young, Cambridge Univ. Press, Cambridge, 2007, 279–318 | MR | Zbl
[8] A. Tyurin, Geometric quantization and mirror symmetry, arXiv: math/9902027
[9] A. Weinstein, Ann. of Math., 98:3 (1973), 377–410 | DOI | MR | Zbl
[10] N. A. Tyurin, TMF, 150:2 (2007), 325–337 | DOI | MR | Zbl
[11] C.-H. Cho, Holomorphic discs, spin structures and the Floer cohomology of the Clifford torus, PhD Thesis, Univ. of Wisconsin, Madison, 2003 ; Int. Math. Res. Not., 2004, no. 35, 1803–1843 | MR | DOI | MR | Zbl
[12] Yu. Chekanov, T. Schlenk, Lagrangian tori in projective spaces, in preparation
[13] D. Auroux, J. Gőkova Geom. Topol., 1 (2007), 51–91 ; arXiv: 0706.3207 | MR | Zbl
[14] S. Belev, Sobstvennye nelineinye kvantovye podsistemy standartnykh kvantovykh sistem, diplom bakalavra, OIYaI, Dubna, 2007