Toward an ultrametric theory of turbulence
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 413-424 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the relation between ultrametric analysis, wavelet theory, and cascade models of turbulence. We construct explicit solutions of the nonlinear ultrametric integral equation with quadratic nonlinearity, using a recursive hierarchical procedure analogous to the procedure used for the cascade models of turbulence.
Keywords: ultrametric wavelet, ultrametric analysis, cascade model of turbulence.
@article{TMF_2008_157_3_a7,
     author = {S. V. Kozyrev},
     title = {Toward an~ultrametric theory of turbulence},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {413--424},
     year = {2008},
     volume = {157},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a7/}
}
TY  - JOUR
AU  - S. V. Kozyrev
TI  - Toward an ultrametric theory of turbulence
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 413
EP  - 424
VL  - 157
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a7/
LA  - ru
ID  - TMF_2008_157_3_a7
ER  - 
%0 Journal Article
%A S. V. Kozyrev
%T Toward an ultrametric theory of turbulence
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 413-424
%V 157
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a7/
%G ru
%F TMF_2008_157_3_a7
S. V. Kozyrev. Toward an ultrametric theory of turbulence. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 413-424. http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a7/

[1] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | MR | Zbl

[2] A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer, Dordrecht, 1997 | MR | Zbl

[3] A. N. Kochubei, Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields, Pure Appl. Math., 244, Dekker, New York, 2001 | MR | Zbl

[4] S. V. Kozyrev, Izv. RAN. Ser. matem., 66:2 (2002), 149–158 ; arXiv: math-ph/0012019 | DOI | MR | Zbl

[5] S. V. Kozyrev, A. Yu. Khrennikov, Izv. RAN. Ser. matem., 69:5 (2005), 133–148 ; arXiv: math-ph/0412062 | DOI | MR | Zbl

[6] A. Yu. Khrennikov, S. V. Kozyrev, Appl. Comput. Harmon. Anal., 19:1 (2005), 61–76 | DOI | MR | Zbl

[7] S. V. Kozyrev, Matem. sb., 198:1 (2007), 103–126 ; arXiv: math-ph/0412082 | DOI | MR | Zbl

[8] S. Albeverio, A. Yu. Khrennikov, V. M. Shelkovich, Izv. RAN. Ser. matem., 69:2 (2005), 3–44 | DOI | MR | Zbl

[9] S. Albeverio, A. Yu. Khrennikov, V. M. Shelkovich, Math. Nachr., 278:1–2 (2005), 3–16 | DOI | MR | Zbl

[10] S. Fischenko, E. Zelenov, “$p$-Adic models of turbulence”, $p$-Adic Mathematical Physcis, AIP Conf. Proc., 286, eds. A. Yu. Khrennikov, Z. Rakic, I. V. Volovich, AIP, New York, 2006, 174–191 | DOI | MR

[11] S. V. Kozyrev, A. Yu. Khrennikov, Dokl. RAN, 411:3 (2006), 319–322 | DOI | MR | Zbl

[12] P. G. Frik, Turbulentnost: modeli i podkhody, Kurs lektsii. Ch. I, PGTU, Perm, 1998; Ч. II, 1999

[13] E. B. Gledzer, F. V. Dolzhanskii, A. M. Obukhov, Sistemy gidrodinamicheskogo tipa i ikh primenenie, Nauka, M., 1981 | MR | Zbl