Equivalence of commutation relations
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 406-412 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider $\mathcal C^*$-algebras of commutation relations over the fields $\mathbb Q_p$, $p=2,3,5,\dots,\infty$. We describe all the irreducible separable representations of these algebras. We prove that the algebras are not isomorphic at different $p$.
Mots-clés : commutation relation
Keywords: $p$-adic topology, irreducible representation, equivalence of representations.
@article{TMF_2008_157_3_a6,
     author = {E. I. Zelenov},
     title = {Equivalence of commutation relations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {406--412},
     year = {2008},
     volume = {157},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a6/}
}
TY  - JOUR
AU  - E. I. Zelenov
TI  - Equivalence of commutation relations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 406
EP  - 412
VL  - 157
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a6/
LA  - ru
ID  - TMF_2008_157_3_a6
ER  - 
%0 Journal Article
%A E. I. Zelenov
%T Equivalence of commutation relations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 406-412
%V 157
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a6/
%G ru
%F TMF_2008_157_3_a6
E. I. Zelenov. Equivalence of commutation relations. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 406-412. http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a6/

[1] G. W. Mackey, Duke Math. J., 16 (1949), 311–326 | DOI | MR

[2] M. Rieffel, Duke Math. J., 39 (1972), 745–752 | DOI | MR | Zbl

[3] Dzh. Merfi, $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997 | MR | Zbl

[4] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz, T. 1, 2, Nauka, M., 1975 | MR | MR | MR | MR | Zbl

[5] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | MR | Zbl

[6] J. Slawny, Comm. Math. Phys., 24:2 (1972), 151–170 | DOI | MR | Zbl