Equivalence of commutation relations
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 406-412
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider $\mathcal C^*$-algebras of commutation relations over the fields $\mathbb Q_p$, $p=2,3,5,\dots,\infty$. We describe all the irreducible separable representations of these algebras. We prove that the algebras are not isomorphic at different $p$.
Mots-clés :
commutation relation
Keywords: $p$-adic topology, irreducible representation, equivalence of representations.
Keywords: $p$-adic topology, irreducible representation, equivalence of representations.
@article{TMF_2008_157_3_a6,
author = {E. I. Zelenov},
title = {Equivalence of commutation relations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {406--412},
year = {2008},
volume = {157},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a6/}
}
E. I. Zelenov. Equivalence of commutation relations. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 406-412. http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a6/
[1] G. W. Mackey, Duke Math. J., 16 (1949), 311–326 | DOI | MR
[2] M. Rieffel, Duke Math. J., 39 (1972), 745–752 | DOI | MR | Zbl
[3] Dzh. Merfi, $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997 | MR | Zbl
[4] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz, T. 1, 2, Nauka, M., 1975 | MR | MR | MR | MR | Zbl
[5] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | MR | Zbl
[6] J. Slawny, Comm. Math. Phys., 24:2 (1972), 151–170 | DOI | MR | Zbl