@article{TMF_2008_157_3_a5,
author = {V. V. Zharinov},
title = {Evolution systems on a~lattice},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {391--405},
year = {2008},
volume = {157},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a5/}
}
V. V. Zharinov. Evolution systems on a lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 391-405. http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a5/
[1] V. V. Zharinov, TMF, 68:2 (1986), 163–171 | DOI | MR | Zbl
[2] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | MR | Zbl
[3] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR | Zbl
[4] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl
[5] V. V. Zharinov, Lecture Notes on Geometrical Aspects of Partial Differential Equations, Ser. Sov. and East Eur. Math., 9, World Scientific, Singapore, 1992 | MR | Zbl
[6] A. M. Vinogradov, I. S. Krasilschik (red.), Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Faktorial, M., 1997 | MR | Zbl
[7] W. Hereman, M. Colagrosso, R. Sayers et al., “Continuous and discrete homotopy operators and the computation of conservation laws”, Differential Equations with Symbolic Computation, Trends Math., eds. D. Wang, Z. Zheng, Basel, 2005, 255–290 | DOI | MR | Zbl
[8] P. E. Hydon, E. L. Mansfield, Found. Comput. Math., 4:2 (2004), 187–217 | DOI | MR | Zbl
[9] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125:3 (2000), 355–424 | DOI | MR | Zbl
[10] I. M. Anderson, The variational bicomplex, mp/ Publications/VB/vb.pdf}, 2004 http://www.math.usu.edu/~fg\underbar{