Evolution systems on a lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 391-405 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the algebraic geometric approach to differential–difference equations, we study symmetries and conservation laws of evolutionary systems on multidimensional lattices. We describe conservation laws in terms of their characteristics.
Keywords: multidimensional integer lattice, difference jet, symmetry, conservation law, characteristics of conservation laws.
@article{TMF_2008_157_3_a5,
     author = {V. V. Zharinov},
     title = {Evolution systems on a~lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {391--405},
     year = {2008},
     volume = {157},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a5/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Evolution systems on a lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 391
EP  - 405
VL  - 157
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a5/
LA  - ru
ID  - TMF_2008_157_3_a5
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Evolution systems on a lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 391-405
%V 157
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a5/
%G ru
%F TMF_2008_157_3_a5
V. V. Zharinov. Evolution systems on a lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 391-405. http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a5/

[1] V. V. Zharinov, TMF, 68:2 (1986), 163–171 | DOI | MR | Zbl

[2] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | MR | Zbl

[3] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR | Zbl

[4] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl

[5] V. V. Zharinov, Lecture Notes on Geometrical Aspects of Partial Differential Equations, Ser. Sov. and East Eur. Math., 9, World Scientific, Singapore, 1992 | MR | Zbl

[6] A. M. Vinogradov, I. S. Krasilschik (red.), Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Faktorial, M., 1997 | MR | Zbl

[7] W. Hereman, M. Colagrosso, R. Sayers et al., “Continuous and discrete homotopy operators and the computation of conservation laws”, Differential Equations with Symbolic Computation, Trends Math., eds. D. Wang, Z. Zheng, Basel, 2005, 255–290 | DOI | MR | Zbl

[8] P. E. Hydon, E. L. Mansfield, Found. Comput. Math., 4:2 (2004), 187–217 | DOI | MR | Zbl

[9] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125:3 (2000), 355–424 | DOI | MR | Zbl

[10] I. M. Anderson, The variational bicomplex, mp/ Publications/VB/vb.pdf}, 2004 http://www.math.usu.edu/~fg\underbar{