Applications of Tauberian theorems in some problems in mathematical physics
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 373-390 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give some multidimensional Tauberian theorems for generalized functions and show examples of their application in mathematical physics. In particular, we consider the problems of stabilizing the solutions of the Cauchy problem for the heat kernel equation, multicomponent gas diffusion, and the asymptotic Cauchy problem for a free Schrödinger equation in the norms of different Banach spaces among others.
Keywords: Tauberian theorem, generalized function, partial differential equation, holomorphic function, Schrödinger equation, Cauchy problem, Banach space.
@article{TMF_2008_157_3_a4,
     author = {Yu. N. Drozhzhinov and B. I. Zavialov},
     title = {Applications of {Tauberian} theorems in some problems in mathematical physics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {373--390},
     year = {2008},
     volume = {157},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a4/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
AU  - B. I. Zavialov
TI  - Applications of Tauberian theorems in some problems in mathematical physics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 373
EP  - 390
VL  - 157
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a4/
LA  - ru
ID  - TMF_2008_157_3_a4
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%A B. I. Zavialov
%T Applications of Tauberian theorems in some problems in mathematical physics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 373-390
%V 157
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a4/
%G ru
%F TMF_2008_157_3_a4
Yu. N. Drozhzhinov; B. I. Zavialov. Applications of Tauberian theorems in some problems in mathematical physics. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 373-390. http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a4/

[1] G. Khardi, Raskhodyaschiesya ryady, IL, M., 1951 | MR | MR | Zbl

[2] N. Wiener, J. Ann. of Math., 33:1 (1932), 1–100 | DOI | MR | Zbl

[3] J. Korevaar, Tauberian Theory. A Century of Developments, Grundlehren Math. Wiss., 329, Springer, Berlin, 2004 | DOI | MR | Zbl

[4] H. N. Bogolyubov, V. S. Vladimirov, A. N. Tavkhelidze, TMF, 12:3 (1972), 305–330 | DOI | MR

[5] V. S. Vladimirov, B. I. Zavyalov, TMF, 50:2 (1982), 163–194 | DOI | MR

[6] V. S. Vladimirov, Izv. AN SSSR. Ser. matem., 40:5 (1976), 1084–1101 | MR | Zbl

[7] V. S. Vladimirov, Yu. N. Drozhzhinov, B. I. Zavyalov, Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR | MR | Zbl

[8] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR | MR | Zbl

[9] Yu. N. Drozhzhinov, B. I. Zavyalov, Matem. sb., 189:7 (1998), 91–130 | DOI | MR | Zbl

[10] Yu. N. Drozhzhinov, B. I. Zavyalov, Dokl. RAN, 363:2 (1998), 156–159 | MR | Zbl

[11] E. Seneta, Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | MR | Zbl

[12] Yu. N. Drozhzhinov, B. I. Zavyalov, Izv. AN SSSR. Ser. matem., 66:4 (2002), 47–118 | DOI | MR | Zbl

[13] Yu. N. Drozhzhinov, B. I. Zavyalov, Matem. sb., 194:11 (2003), 17–64 | DOI | MR | Zbl

[14] Yu. N. Drozhzhinov, B. I. Zavyalov, Dokl. RAN, 391:2 (2003), 158–161 | MR | Zbl

[15] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. II. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR | MR | Zbl

[16] L. D. Fadeev, O. A. Yakubovskii, Lektsii po kvantovoi mekhanike, Izd-vo LGU, L., 1980 | Zbl