A  strengthening of the interior Hölder continuity property for solutions of the Dirichlet problem for a second-order elliptic equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 345-363 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical solution of the Dirichlet problem with a continuous boundary function for a linear elliptic equation with Hölder continuous coefficients and right-hand side satisfies the interior Schauder estimates describing the possible increase of the solution smoothness characteristics as the boundary is approached, namely, of the solution derivatives and their difference ratios in the corresponding Hölder norm. We prove similar assertions for the generalized solution with some other smoothness characteristics. In contrast to the interior Schauder estimates for classical solutions, our established estimates for the differential characteristics imply the continuity of the generalized solution in a sense natural for the problem (in the sense of $(n-1)$-dimensional continuity) up to the boundary of the domain in question. We state the global properties in terms of the boundedness of the integrals of the square of the difference between the solution values at different points with respect to especially normalized measures in a certain class.
Mots-clés : elliptic equation
Keywords: smoothness of solution, function space.
@article{TMF_2008_157_3_a2,
     author = {A. K. Gushchin},
     title = {A~ strengthening of the~interior {H\"older} continuity property for solutions of {the~Dirichlet} problem for a~second-order elliptic equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {345--363},
     year = {2008},
     volume = {157},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a2/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - A  strengthening of the interior Hölder continuity property for solutions of the Dirichlet problem for a second-order elliptic equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 345
EP  - 363
VL  - 157
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a2/
LA  - ru
ID  - TMF_2008_157_3_a2
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T A  strengthening of the interior Hölder continuity property for solutions of the Dirichlet problem for a second-order elliptic equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 345-363
%V 157
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a2/
%G ru
%F TMF_2008_157_3_a2
A. K. Gushchin. A  strengthening of the interior Hölder continuity property for solutions of the Dirichlet problem for a second-order elliptic equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 345-363. http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a2/

[1] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | MR | Zbl

[2] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR | MR | Zbl

[3] V. P. Mikhailov, A. K. Guschin, Dopolnitelnye glavy kursa “Uravneniya matematicheskoi fiziki”, Lekts. kursy NOTs, 7, Matem. in-t im. V. A. Steklova RAN, M., 2007 | DOI

[4] V. P. Mikhailov, Differents. uravneniya, 12:10 (1976), 1877–1891 | MR | Zbl

[5] A. K. Guschin, Matem. sb., 137(179):1(9) (1988), 19–64 | DOI | MR | Zbl

[6] A. K. Guschin, V. P. Mikhailov, Matem. sb., 185:1 (1994), 121–160 | DOI | MR | Zbl

[7] A. K. Guschin, V. P. Mikhailov, Dokl. RAN, 333:3 (1993), 290–292 | MR | Zbl

[8] A. K. Guschin, V. P. Mikhailov, Matem. sb., 186:2 (1995), 37–58 | DOI | MR | Zbl

[9] A. K. Guschin, V. P. Mikhailov, Dokl. RAN, 351:1 (1996), 7–8 | MR | Zbl

[10] A. K. Guschin, Dokl. RAN, 373:2 (2000), 161–163 | MR | Zbl

[11] A. K. Guschin, Matem. sb., 193:5 (2002), 17–36 | DOI | MR | Zbl

[12] I. Nechas, Chekhosl. matem. zhurn., 10(85) (1960), 283–298 | MR | Zbl

[13] I. M. Petrushko, Matem. sb., 119(161):1(9) (1982), 48–77 | DOI | MR | Zbl

[14] F. Riesz, Math. Z., 18:1 (1923), 87–95 | DOI | MR | Zbl

[15] J. E. Littlewood, R. Paley, J. London Math. Soc., 6:3 (1931), 230–233 | DOI | MR | Zbl

[16] J. E. Littlewood, R. Paley, Proc. London Math. Soc., 42:1 (1936), 52–89 | DOI | Zbl

[17] J. E. Littlewood, R. Paley, Proc. Lond. Math. Soc., 43 (1937), 105–126 | DOI | Zbl

[18] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M., 1950 | MR | Zbl

[19] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | MR | Zbl

[20] G. Cimmino, Rend. Circ. Mat. Palermo, 61 (1938), 177–221 | DOI | Zbl

[21] K. Miranda, Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, M., 1957 | MR | Zbl

[22] A. K. Guschin, V. P. Mikhailov, “O granichnykh znacheniyakh reshenii ellipticheskikh uravnenii”, Obobschennye funktsii i ikh primeneniya v matematicheskoi fizike, Tr. mezhdunar. konf., VTs AN SSSR, M., 1981, 189–205

[23] O. I. Bogoyavlenskii, V. S. Vladimirov, I. V. Volovich i dr., “Kraevye zadachi matematicheskoi fiziki”, Tr. MIAN, 175, 1986, 63–102 | MR | Zbl

[24] A. K. Guschin, Dokl. AN SSSR, 302:5 (1988), 1044–1048 | MR | Zbl

[25] A. K. Guschin, V. P. Mikhailov, Matem. sb., 182:6 (1991), 787–810 | DOI | MR | Zbl

[26] L. Carleson, Amer. J. Math., 80:4 (1958), 921–930 | DOI | MR | Zbl

[27] L. Carleson, Ann. of Math., 76:3 (1962), 547–559 | DOI | MR | Zbl

[28] L. Hörmander, Math. Scand., 20 (1967), 65–78 | DOI | MR | Zbl

[29] E. De Giorgi, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 3 (1957), 25–43 | MR | Zbl

[30] J. Nash, Amer. J. Math., 80:4 (1958), 931–954 | DOI | MR | Zbl

[31] J. Moser, Comm. Pure Appl. Math., 13:3 (1960), 457–468 | DOI | MR | Zbl

[32] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | MR | Zbl

[33] A. K. Guschin, Sib. matem. zhurn., 46:5 (2005), 1036–1052 | DOI | MR | Zbl

[34] A. K. Guschin, Dokl. RAN, 404:1 (2005), 14–17 | MR | Zbl

[35] A. K. Guschin, Matem. sb., 189:7 (1998), 53–90 | DOI | MR | Zbl

[36] A. K. Guschin, Dokl. RAN, 358:6 (1998), 731–733 | MR | Zbl

[37] A. K. Guschin, Dokl. RAN, 396:1 (2004), 15–18 | MR | Zbl

[38] A. K. Guschin, Dokl. RAN, 415:1 (2007), 10–13 | DOI