Cauchy problem on non-globally hyperbolic space-times
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 334-344 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider solutions of the Cauchy problem for hyperbolic equations on non-globally hyperbolic space-times containing closed timelike curves (time machines). We prove that for the wave equation on such space-times, there exists a solution of the Cauchy problem that is discontinuous and in some sense unique for arbitrary initial conditions given on a hypersurface at a time preceding the formation of closed timelike curves. If the hypersurface of initial conditions intersects the region containing closed timelike curves, then the solution of the Cauchy problem exists only for initial conditions satisfying a certain self-consistency requirement.
Keywords: cauchy problem, non-globally hyperbolic space-time, closed timelike curve.
@article{TMF_2008_157_3_a1,
     author = {I. Ya. Aref'eva and I. V. Volovich and T. Ishiwatari},
     title = {Cauchy problem on non-globally hyperbolic space-times},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {334--344},
     year = {2008},
     volume = {157},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a1/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - I. V. Volovich
AU  - T. Ishiwatari
TI  - Cauchy problem on non-globally hyperbolic space-times
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 334
EP  - 344
VL  - 157
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a1/
LA  - ru
ID  - TMF_2008_157_3_a1
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A I. V. Volovich
%A T. Ishiwatari
%T Cauchy problem on non-globally hyperbolic space-times
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 334-344
%V 157
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a1/
%G ru
%F TMF_2008_157_3_a1
I. Ya. Aref'eva; I. V. Volovich; T. Ishiwatari. Cauchy problem on non-globally hyperbolic space-times. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 334-344. http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a1/

[1] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | MR | Zbl

[2] Zh. Adamar, Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978 | MR | MR | Zbl

[3] I. Petrowsky, Matem. sb., 2(44):5 (1937), 815–870 | MR | Zbl

[4] Zh. Lere, Giperbolicheskie differentsialnye uravneniya, Nauka, M., 1984 | MR | MR | Zbl

[5] S. Khoking, Dzh. Ellis, Krupnomasshtabnaya struktura prostranstva-vremeni, Mir, M., 1977 | MR | Zbl

[6] M. Visser, Lorentzian Wormholes: from Einstein to Hawking, AIP Ser. Comput. Appl. Math. Phys., Springer, New York, 1995 | MR

[7] J. R. Gott, Time Travel in Einstein's Universe: the Physical Possibilities of Travel Through Time, Houghton Mifflin, New York, 2001 | MR

[8] I. Todorov, Kurt Goedel and his universe, arXiv: 0709.1387 | MR

[9] V. V. Kozlov, I. V. Volovich, Int. J. Geom. Methods Mod. Phys., 3:7 (2006), 1349–1357 ; arXiv: gr-qc/0603111 | DOI | MR | Zbl | MR

[10] J. Friedman, M. S. Morris, I. D. Novikov et al., Phys. Rev. D, 42:6 (1990), 1915–1930 | DOI | MR

[11] D. Deutsch, Phys. Rev. D, 44:10 (1991), 3197–3217 | DOI | MR

[12] H. D. Politzer, Phys. Rev. D, 49:8 (1994), 3981–3989 | DOI | MR

[13] I. Ya. Aref'eva, I. V. Volovich, Int. J. Geom. Methods Mod. Phys., 5:4 (2008), 641–651 ; arXiv: 0710.2696 | MR | Zbl

[14] A. Mironov, A. Morozov, T. N. Tomaras, Facta Univer. Ser. Phys., Chem., Technology, 4 (2006), 381–404; arXiv: 0710.3395

[15] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR | MR | Zbl