Cauchy problem on non-globally hyperbolic space-times
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 334-344
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider solutions of the Cauchy problem for hyperbolic equations on
non-globally hyperbolic space-times containing closed timelike curves
(time machines). We prove that for the wave equation on such
space-times, there exists a solution of the Cauchy problem that is
discontinuous and in some sense unique for arbitrary initial conditions given
on a hypersurface at a time preceding the formation of closed timelike
curves. If the hypersurface of initial conditions intersects the region
containing closed timelike curves, then the solution of the Cauchy problem
exists only for initial conditions satisfying a certain self-consistency
requirement.
Keywords:
cauchy problem, non-globally hyperbolic space-time, closed timelike curve.
@article{TMF_2008_157_3_a1,
author = {I. Ya. Aref'eva and I. V. Volovich and T. Ishiwatari},
title = {Cauchy problem on non-globally hyperbolic space-times},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {334--344},
publisher = {mathdoc},
volume = {157},
number = {3},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a1/}
}
TY - JOUR AU - I. Ya. Aref'eva AU - I. V. Volovich AU - T. Ishiwatari TI - Cauchy problem on non-globally hyperbolic space-times JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2008 SP - 334 EP - 344 VL - 157 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a1/ LA - ru ID - TMF_2008_157_3_a1 ER -
I. Ya. Aref'eva; I. V. Volovich; T. Ishiwatari. Cauchy problem on non-globally hyperbolic space-times. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 334-344. http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a1/