The question of the asymptotic behavior as $|t|\to\infty$ of boundary
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 325-333 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain lower asymptotic estimates for tachyon fields of open and closed strings as $|t|\to\infty$. They confirm the expressions in the first asymptotic term that were previously found as solutions of linearized equations; this is not confirmed in the second asymptotic term.
Keywords: string, tachyon.
@article{TMF_2008_157_3_a0,
     author = {V. S. Vladimirov},
     title = {The~question of the~asymptotic behavior as $|t|\to\infty$ of boundary},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {325--333},
     year = {2008},
     volume = {157},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a0/}
}
TY  - JOUR
AU  - V. S. Vladimirov
TI  - The question of the asymptotic behavior as $|t|\to\infty$ of boundary
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 325
EP  - 333
VL  - 157
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a0/
LA  - ru
ID  - TMF_2008_157_3_a0
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%T The question of the asymptotic behavior as $|t|\to\infty$ of boundary
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 325-333
%V 157
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a0/
%G ru
%F TMF_2008_157_3_a0
V. S. Vladimirov. The question of the asymptotic behavior as $|t|\to\infty$ of boundary. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 3, pp. 325-333. http://geodesic.mathdoc.fr/item/TMF_2008_157_3_a0/

[1] P. H. Frampton, Y. Okada, Phys. Rev. D, 37:10 (1988), 3077–3079 | DOI | MR

[2] L. Brekke, P. G. O. Freund, Phys. Rep., 233:1 (1993), 1–66 | DOI | MR

[3] N. Moeller, M. Schnabl, JHEP, 01 (2004), 011 | DOI | MR

[4] V. S. Vladimirov, TMF, 149:3 (2006), 354–367 | DOI | MR | Zbl

[5] N. Moeller, B. Zwiebach, JHEP, 10 (2002), 034 | DOI | MR

[6] V. S. Vladimirov, Ya. I. Volovich, TMF, 138:3 (2004), 355–368 | DOI | MR | Zbl

[7] I. Ya. Aref'eva, A. S. Koshelev, JHEP, 02 (2007), 041 | DOI

[8] E. Coletti, I. Sigalov, W. Taylor, JHEP, 08 (2005), 104 ; arXiv: hep-th/0505031v1 | DOI | MR

[9] V. S. Vladimirov, Science in China Series A: Mathematics, 51:4 (2008), 754–764 | DOI | MR | Zbl

[10] V. S. Vladimirov, Methods of the Theory of Generalized Functions, Anal. Methods Spec. Funct., 6, Taylor and Francis, London–New York, 2002 | MR | Zbl