Asymptotic behaviors for percolation clusters with uncorrelated
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 2, pp. 309-320
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider random processes occurring on bond percolation clusters and
represented as a generalization of the “divide and color model” introduced
by Häggström in 2001. We investigate the asymptotic behaviors for bond
percolation clusters with uncorrelated weights. For subcritical and
supercritical phases, we prove the law of large numbers and central limit
theorems in the models corresponding to the so-called quenched and annealed
probabilities.
Keywords:
percolation cluster, law of large numbers, central limit theorem.
@article{TMF_2008_157_2_a9,
author = {Hsu Chunghao and Han Dong},
title = {Asymptotic behaviors for percolation clusters with uncorrelated},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {309--320},
publisher = {mathdoc},
volume = {157},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a9/}
}
TY - JOUR AU - Hsu Chunghao AU - Han Dong TI - Asymptotic behaviors for percolation clusters with uncorrelated JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2008 SP - 309 EP - 320 VL - 157 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a9/ LA - ru ID - TMF_2008_157_2_a9 ER -
Hsu Chunghao; Han Dong. Asymptotic behaviors for percolation clusters with uncorrelated. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 2, pp. 309-320. http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a9/