Asymptotic behaviors for percolation clusters with uncorrelated
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 2, pp. 309-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider random processes occurring on bond percolation clusters and represented as a generalization of the “divide and color model” introduced by Häggström in 2001. We investigate the asymptotic behaviors for bond percolation clusters with uncorrelated weights. For subcritical and supercritical phases, we prove the law of large numbers and central limit theorems in the models corresponding to the so-called quenched and annealed probabilities.
Keywords: percolation cluster, law of large numbers, central limit theorem.
@article{TMF_2008_157_2_a9,
     author = {Hsu Chunghao and Han Dong},
     title = {Asymptotic behaviors for percolation clusters with uncorrelated},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {309--320},
     year = {2008},
     volume = {157},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a9/}
}
TY  - JOUR
AU  - Hsu Chunghao
AU  - Han Dong
TI  - Asymptotic behaviors for percolation clusters with uncorrelated
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 309
EP  - 320
VL  - 157
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a9/
LA  - ru
ID  - TMF_2008_157_2_a9
ER  - 
%0 Journal Article
%A Hsu Chunghao
%A Han Dong
%T Asymptotic behaviors for percolation clusters with uncorrelated
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 309-320
%V 157
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a9/
%G ru
%F TMF_2008_157_2_a9
Hsu Chunghao; Han Dong. Asymptotic behaviors for percolation clusters with uncorrelated. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 2, pp. 309-320. http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a9/

[1] M. T. Barlow, Ann. Probab., 32:4 (2004), 3024–3084 | DOI | MR | Zbl

[2] N. Berger, M. Biskup, Probab. Theory Related Fields, 137:1–2 (2007), 83–120 | MR | Zbl

[3] C. Hoffman, E. Mossel, Potential Anal., 14:4 (2001), 375–385 | DOI | MR | Zbl

[4] P. Mathieu, E. Remy, Ann. Probab., 32:1A (2004), 100–128 | DOI | MR | Zbl

[5] O. Häggström, Stochastic Process. Appl., 96:2 (2001), 213–242 | DOI | MR | Zbl

[6] M. Kaufman, J. E. Touma, Phys. Rev. B, 49:14 (1994), 9583–9585 | DOI

[7] C. L. Henley, Phys. Rev. Lett., 54:18 (1985), 2030–2033 | DOI | MR

[8] O. Häggström, Ann. Appl. Probab., 9:4 (1999), 1149–1159 | DOI | MR | Zbl

[9] O. Garet, ESAIM Probab. Stat., 5 (2001), 105–118, (electronic) | DOI | MR | Zbl

[10] G. Grimmett, Percolation, Springer, Berlin, 1989 | MR | Zbl

[11] S. Havlin, R. Nossal, J. Phys. A, 17:8 (1984), L427–L432 | DOI | MR

[12] C. M. Newman, L. S. Schulman, J. Stat. Phys., 26:3 (1981), 613–628 | DOI | MR | Zbl

[13] H. Kesten, “Some highlights of percolation”, Proc. Internat. Congr. of Mathematicians, V. 1, Higher Education Press, Beijing, 2002, 345–362 | MR | Zbl

[14] A. A. Tempelman, Trudy MMO, 26, 1972, 95–132 | MR | Zbl

[15] M. Penrose, Random Geometric Graphs, Oxford Stud. Probab., 5, Oxford University Press, Oxford, 2003 | MR | Zbl