Some asymptotic formulas for the~Bogoliubov Gaussian measure
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 2, pp. 286-308

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider problems of integrating over the Bogoliubov measure in the space of continuous functions and obtain asymptotic formulas for one class of Laplace-type functional integrals with respect to the Bogoliubov measure. We also prove related asymptotic results concerning large deviations for the Bogoliubov measure. For the basic functional, we take the $L^p$ norm and establish that the Bogoliubov trajectories are Hölder-continuous of order $\gamma1/2$.
Keywords: Bogoliubov measure, Laplace method in a Banach space.
@article{TMF_2008_157_2_a8,
     author = {V. R. Fatalov},
     title = {Some asymptotic formulas for {the~Bogoliubov} {Gaussian} measure},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {286--308},
     publisher = {mathdoc},
     volume = {157},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a8/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Some asymptotic formulas for the~Bogoliubov Gaussian measure
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 286
EP  - 308
VL  - 157
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a8/
LA  - ru
ID  - TMF_2008_157_2_a8
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Some asymptotic formulas for the~Bogoliubov Gaussian measure
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 286-308
%V 157
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a8/
%G ru
%F TMF_2008_157_2_a8
V. R. Fatalov. Some asymptotic formulas for the~Bogoliubov Gaussian measure. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 2, pp. 286-308. http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a8/