Some asymptotic formulas for the~Bogoliubov Gaussian measure
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 2, pp. 286-308
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider problems of integrating over the Bogoliubov measure in the space
of continuous functions and obtain asymptotic formulas for one class of
Laplace-type functional integrals with respect to the Bogoliubov measure. We
also prove related asymptotic results concerning large deviations for
the Bogoliubov measure. For the basic functional, we take the $L^p$ norm and
establish that the Bogoliubov trajectories are Hölder-continuous of order
$\gamma1/2$.
Keywords:
Bogoliubov measure, Laplace method in a Banach space.
@article{TMF_2008_157_2_a8,
author = {V. R. Fatalov},
title = {Some asymptotic formulas for {the~Bogoliubov} {Gaussian} measure},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {286--308},
publisher = {mathdoc},
volume = {157},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a8/}
}
V. R. Fatalov. Some asymptotic formulas for the~Bogoliubov Gaussian measure. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 2, pp. 286-308. http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a8/