Two-dimensional rational solitons and their blowup via the Moutard
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 2, pp. 188-207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a family of two-dimensional stationary Schrödinger operators with rapidly decaying smooth rational potentials and nontrivial $L_2$ kernels. We show that some of the constructed potentials generate solutions of the Veselov–Novikov equation that decay rapidly at infinity, are nonsingular at $t=0$, and have singularities at finite times $t\ge t_0>0$.
Keywords: two-dimensional Schrödinger operator, Veselov–Novikov equation, solution blowup.
Mots-clés : Moutard transformation
@article{TMF_2008_157_2_a2,
     author = {I. A. Taimanov and S. P. Tsarev},
     title = {Two-dimensional rational solitons and their blowup via {the~Moutard}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {188--207},
     year = {2008},
     volume = {157},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a2/}
}
TY  - JOUR
AU  - I. A. Taimanov
AU  - S. P. Tsarev
TI  - Two-dimensional rational solitons and their blowup via the Moutard
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 188
EP  - 207
VL  - 157
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a2/
LA  - ru
ID  - TMF_2008_157_2_a2
ER  - 
%0 Journal Article
%A I. A. Taimanov
%A S. P. Tsarev
%T Two-dimensional rational solitons and their blowup via the Moutard
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 188-207
%V 157
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a2/
%G ru
%F TMF_2008_157_2_a2
I. A. Taimanov; S. P. Tsarev. Two-dimensional rational solitons and their blowup via the Moutard. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 2, pp. 188-207. http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a2/

[1] T. Moutard, J. École Polyt., 45 (1878), 1–11 | Zbl

[2] I. A. Taimanov, S. P. Tsarev, UMN, 62:3(375) (2007), 217–218 | DOI | MR | Zbl

[3] L. D. Faddeev, “Obratnaya zadacha kvantovoi teorii rasseyaniya. II”, Itogi nauki i tekhniki. Sovrem. problemy matem., 3, ed. R. V. Gamkrelidze, VINITI, M., 1974, 93–180 | MR | Zbl

[4] R. G. Novikov, G. M. Khenkin, UMN, 42:3(255) (1987), 93–152 | MR | Zbl

[5] A. N. Veselov, S. P. Novikov, DAN SSSR, 279 (1984), 20–24 | MR | Zbl

[6] C. E. Kenig, G. Ponce, L. Vega, J. Amer. Math. Soc., 4:2 (1991), 323–347 | DOI | MR | Zbl

[7] V. A. Dubrovin, I. M. Krichever, S. P. Novikov, DAN SSSR, 229 (1976), 15–18 | MR | Zbl

[8] P. G. Grinevich, S. V. Manakov, Funkts. analiz i ego pril., 20:2 (1986), 14–24 | DOI | MR | Zbl

[9] P. G. Grinevich, S. P. Novikov, Funkts. analiz i ego pril., 22:1 (1988), 23–33 | DOI | MR | Zbl

[10] G. Darboux, C. R. Acad. Sci. Paris, 94 (1882), 1456–1459 | Zbl

[11] M. Adler, J. Moser, Comm. Math. Phys., 61:1 (1978), 1–30 | DOI | MR | Zbl

[12] H. Airault, H. P. McKean, J. Moser, Comm. Pure Appl. Math., 30:1 (1977), 95–148 | DOI | MR | Zbl

[13] S. P. Novikov, A. P. Veselov, “Exactly solvable two-dimensional Schrödinger operators and Laplace transformations”, Solitons, Geometry, and Topology: On the Crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, eds. V. M. Buchstaber, S. P. Novikov, AMS, Providence, RI, 1997, 109–132 | MR | Zbl

[14] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991 | DOI | MR | Zbl

[15] Heng-Chun Hu, Sen-Yue Lou, Qing-Ping Liu, Chinese Phys. Lett., 20 (2003), 1413–1415 | DOI

[16] C. Athorne, J. J. C. Nimmo, Inverse Probl., 7:6 (1991), 809–826 | DOI | MR | Zbl

[17] V. A. Dubrovin, S. P. Novikov, ZhETF, 67:6 (1974), 2131–2144 | MR

[18] L. Bianchi, Lezioni di geometria differenziale, V. 1–4, Zanichelli, Bologna, 1923–1927 | Zbl

[19] E. I. Ganzha, S. P. Tsarev, UMN, 51:6(312) (1996), 197–198 ; arXiv: solv-int/9606003 | DOI | MR | Zbl