Explicit representation of the Green's function for the three-dimensional exterior Helmholtz equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 2, pp. 163-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a sequence of solutions of the exterior Helmholtz equation such that their restrictions form an orthonormal basis on a given surface. The dependence of the coefficients of these functions on the coefficients of the surface are given by an explicit algebraic formula. In the same way, we construct an explicit normal derivative of the Dirichlet Green's function. We also construct the Dirichlet-to-Neumann operator. We prove that the normalized coefficients are uniformly bounded from zero.
Mots-clés : explicit solution
Keywords: Helmholtz exterior problem, Green's function, Dirichlet-to-Neumann operator.
@article{TMF_2008_157_2_a0,
     author = {J. P. Cruz and E. L. Lakshtanov},
     title = {Explicit representation of {the~Green's} function for the~three-dimensional exterior {Helmholtz} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--174},
     year = {2008},
     volume = {157},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a0/}
}
TY  - JOUR
AU  - J. P. Cruz
AU  - E. L. Lakshtanov
TI  - Explicit representation of the Green's function for the three-dimensional exterior Helmholtz equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 163
EP  - 174
VL  - 157
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a0/
LA  - ru
ID  - TMF_2008_157_2_a0
ER  - 
%0 Journal Article
%A J. P. Cruz
%A E. L. Lakshtanov
%T Explicit representation of the Green's function for the three-dimensional exterior Helmholtz equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 163-174
%V 157
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a0/
%G ru
%F TMF_2008_157_2_a0
J. P. Cruz; E. L. Lakshtanov. Explicit representation of the Green's function for the three-dimensional exterior Helmholtz equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 2, pp. 163-174. http://geodesic.mathdoc.fr/item/TMF_2008_157_2_a0/

[1] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, M., 1999 ; A. G. Ramm, Scattering by Obstacles, Math. Appl., 21, Reidel, Dordrecht, 1986 | MR | Zbl | MR | Zbl

[2] J. J. Bowman, T. B. A. Senior, P. L. E. Uslenghi (eds.), Electromagnetic and Acoustic Scattering by Simple Shapes, Hemisphere, New York, 1987 | MR

[3] Le-Wei Li, Mook-Seng Leong, Tat-Soon Yeo et al., Phys. Rev. E, 58:5 (1998), 6792–6806 | DOI

[4] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Appl. Math. Sci., 93, Springer, Berlin, 1992 | DOI | MR | Zbl

[5] S. Gutman, A. G. Ramm, J. Phys. A, 35:38 (2002), 8065–8074 | DOI | MR | Zbl

[6] A. G. Ramm, S. Gutman, Modified Rayleigh conjecture method and its applications, arXiv: math/0601298v1

[7] A. G. Ramm, Izv. vuzov. Ser. radiofizika, 12 (1969), 1185–1196 | MR

[8] A. G. Ramm, Wave Scattering by Small Bodies of Arbitrary Shapes, World Scientific, Singapore, 2005 | MR | Zbl

[9] F. M. Mors, G. Feshbakh, Metody teoreticheskoi fiziki, T. 1, 2, IL, M., 1958, 1960 | MR | Zbl

[10] R. E. Kleinman, Arch. Ration. Mech. Anal., 18:3 (1965), 205–229 | DOI | MR | Zbl

[11] H.-D. Alber, R. Leis, “Initial-boundary value and scattering problems in mathematical physics”, Partial Differential Equations and Calculus of Variations, Lecture Notes in Math., 1357, eds. S. Hildebrandt, R. Leis, Springer, Berlin, 1988, 23–60 | DOI | MR | Zbl

[12] K. Hochberg, Proc. Amer. Math. Soc., 79:2 (1980), 298–302 | DOI | MR | Zbl

[13] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl