Thermodynamics from the~differential geometry standpoint
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 141-148
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the differential-geometric structure of the space of thermodynamic
states in equilibrium thermodynamics. We demonstrate that this space is
a foliation of codimension two and find variables in which the foliation fibers
are flat. We show that we can introduce a symplectic structure on this
space: the external derivative of the $1$-form of the heat source, which
has the form of the skew-symmetric product $dT\wedge dS$ in the found
variables. The entropy $S$ then plays the role of the Lagrange function
(or Hamiltonian) in mechanics, completely determining the thermodynamic system.
Keywords:
symplectic structure, space of states, dynamical principle.
@article{TMF_2008_157_1_a9,
author = {V. P. Pavlov and V. M. Sergeev},
title = {Thermodynamics from the~differential geometry standpoint},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {141--148},
publisher = {mathdoc},
volume = {157},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a9/}
}
TY - JOUR AU - V. P. Pavlov AU - V. M. Sergeev TI - Thermodynamics from the~differential geometry standpoint JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2008 SP - 141 EP - 148 VL - 157 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a9/ LA - ru ID - TMF_2008_157_1_a9 ER -
V. P. Pavlov; V. M. Sergeev. Thermodynamics from the~differential geometry standpoint. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 141-148. http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a9/