@article{TMF_2008_157_1_a7,
author = {G. M. Zhislin},
title = {The~Pauli principle, stability, and bound states in systems of},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {116--129},
year = {2008},
volume = {157},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a7/}
}
G. M. Zhislin. The Pauli principle, stability, and bound states in systems of. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 116-129. http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a7/
[1] G. M. Zhislin, TMF, 152:3 (2007), 528–537 | DOI | MR | Zbl
[2] S. A. Vugalter, G. M. Zhislin, TMF, 76:1 (1988), 132–142 | DOI | MR
[3] R. Lewis, H. Siedentop, S. A. Vugalter, Ann. Inst. H. Poincaré Phys. Théor., 67:1 (1997), 1–28 | MR | Zbl
[4] F. Murnagan, Teoriya predstavlenii grupp, IL, M., 1950 | MR | Zbl
[5] M. Khamermesh, Teoriya grupp i ee primenenie k fizicheskim problemam, Mir, M., 1966 | MR | Zbl
[6] E. Vigner, Teoriya grupp i ee prilozhenie k kvantomekhanicheskoi teorii atomnykh spektrov, IL, M., 1961 | MR | Zbl
[7] S. A. Vugalter, G. M. Zhislin, TMF, 121:2 (1999), 297–306 | DOI | MR | Zbl
[8] E. Lieb, D. Matiss, J. Math. Phys., 3 (1962), 749–751 | DOI | Zbl
[9] G. M. Zhislin, SIGMA, 2 (2006), Paper 024, 9 pp. ; arXiv: math-ph/0602050 | DOI | MR | Zbl