Quantum teleportation
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 79-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of an algebraic approach, we consider a quantum teleportation procedure. It turns out that using the quantum measurement nonlocality hypothesis is unnecessary for describing this procedure. We study the question of what material objects are information carriers for quantum teleportation.
Keywords: entangled state, teleportation of a quantum state
Mots-clés : teleportation of entanglement.
@article{TMF_2008_157_1_a5,
     author = {D. A. Slavnov},
     title = {Quantum teleportation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {79--98},
     year = {2008},
     volume = {157},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a5/}
}
TY  - JOUR
AU  - D. A. Slavnov
TI  - Quantum teleportation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 79
EP  - 98
VL  - 157
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a5/
LA  - ru
ID  - TMF_2008_157_1_a5
ER  - 
%0 Journal Article
%A D. A. Slavnov
%T Quantum teleportation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 79-98
%V 157
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a5/
%G ru
%F TMF_2008_157_1_a5
D. A. Slavnov. Quantum teleportation. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 79-98. http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a5/

[1] D. Boumeister, A. Ekert, A. Tsailinger (red.), Fizika kvantovoi informatsii, Postmarket, M., 2002 | MR | Zbl

[2] D. A. Slavnov, EChAYa, 38:2 (2007), 295–359 | DOI

[3] D. A. Slavnov, TMF, 149:3 (2006), 457–472 | DOI | MR | Zbl

[4] Zh. Diksme, $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR | MR | Zbl

[5] S. Kochen, E. P. Specker, J. Math. Mech., 17 (1967), 59–87 | MR | Zbl

[6] D. M. Greenberger, M. A. Horne, A. Shimony, A. Zeilinger, Amer. J. Phys., 58:12 (1990), 1131–1143 | DOI | MR | Zbl

[7] A. N. Kolmogorov, Osnovnye ponyatiya teorii veroyatnostei, Nauka, M., 1974 | MR | MR | Zbl

[8] Zh. Neve, Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR | MR | Zbl

[9] J. S. Bell, Physics, 1:3 (1964), 195–200 | MR

[10] J. S. Bell, “On the Einstein–Podolsky–Rosen Paradox”, Speakable and Unspeakable in Quantum Mechanics: Collected Paper on Quantum Philosophy, Cambridge University Press, Cambridge, 1993, 139 | MR

[11] J. F. Clauser, M. A. Horne, A. Shimony et al., Phys. Rev. Lett., 23:15 (1969), 880–884 | DOI

[12] Zh. Emkh, Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976 | MR | Zbl

[13] A. Einshtein, B. Podolskii, N. Rozen, UFN, 16:4 (1936), 440–446 | Zbl

[14] D. Bom, Kvantovaya teoriya, Nauka, M., 1965 | MR | Zbl

[15] D. Boumeister, Kh. Vainfurter, A. Tsailinger, “Protokol kvantovoi teleportatsii”, Fizika kvantovoi informatsii, eds. D. Boumeister, A. Ekert, A. Tsailinger, Postmarket, M., 2002, 76–78 | MR | Zbl

[16] D. Boumeister, Dzh.-V. Pen, Kh. Vainfurter, A. Tsailinger, “Eksperimenty po kvantovoi teleportatsii kubitov”, Fizika kvantovoi informatsii, eds. D. Boumeister, A. Ekert, A. Tsailinger, Postmarket, M., 2002, 95–103 | MR | Zbl

[17] T. Jennewein, G. Weihs, J-W. Pan et al., Phys. Rev. Lett., 88:1 (2001), 017903 | DOI

[18] D. Boumeister, Dzh.-V. Pen, Kh. Vainfurter, A. Tsailinger, “Obmen pereputyvaniem: teleportatsiya pereputyvaniya”, Fizika kvantovoi informatsii, eds. D. Boumeister, A. Ekert, A. Tsailinger, Postmarket, M., 2002, 116–119 | MR | Zbl