A Weyl–Cartan space–time model based on the gauge principle
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 64-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the requirement that the gauge invariance principle for the Poincaré–Weyl group be satisfied for the space–time manifold, we construct a model of space–time with the geometric structure of a Weyl–Cartan space. We show that three types of fields must then be introduced as the gauge (“compensating”) fields: Lorentz, translational, and dilatational. Tetrad coefficients then become functions of these gauge fields. We propose a geometric interpretation of the Dirac scalar field. We obtain general equations for the gauge fields, whose sources can be the energy–momentum tensor, the total momentum, and the total dilatation current of an external field. We consider the example of a direct coupling of the gauge field to the orbital momentum of the spinor field. We propose a gravitational field Lagrangian with gauge-invariant transformations of the Poincaré–Weyl group.
Keywords: gauge field, Noether theorem, Weyl–Cartan space
Mots-clés : Poincaré–Weyl group, dilatation current.
@article{TMF_2008_157_1_a4,
     author = {O. V. Babourova and V. Ch. Zhukovskii and B. N. Frolov},
     title = {A~Weyl{\textendash}Cartan space{\textendash}time model based on the~gauge principle},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {64--78},
     year = {2008},
     volume = {157},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a4/}
}
TY  - JOUR
AU  - O. V. Babourova
AU  - V. Ch. Zhukovskii
AU  - B. N. Frolov
TI  - A Weyl–Cartan space–time model based on the gauge principle
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 64
EP  - 78
VL  - 157
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a4/
LA  - ru
ID  - TMF_2008_157_1_a4
ER  - 
%0 Journal Article
%A O. V. Babourova
%A V. Ch. Zhukovskii
%A B. N. Frolov
%T A Weyl–Cartan space–time model based on the gauge principle
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 64-78
%V 157
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a4/
%G ru
%F TMF_2008_157_1_a4
O. V. Babourova; V. Ch. Zhukovskii; B. N. Frolov. A Weyl–Cartan space–time model based on the gauge principle. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 64-78. http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a4/

[1] E. Kartan, “Teoriya grupp i geometriya”, Ob osnovaniyakh geometrii, ed. A. P. Norden, Gostekhizdat, M., 1956, 485–507 | Zbl

[2] I. A. Skhouten, D. Dzh. Stroik, Vvedenie v novye metody differentsialnoi geometrii. T. I. Algebra i uchenie o perenesenii, GONTI, M.–L., 1939 | MR | Zbl

[3] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR | MR | Zbl

[4] A. A. Sokolov, I. M. Ternov, V. Ch. Zhukovskii, A. V. Borisov, Kalibrovochnye polya, Izd-vo MGU, M., 1986 | MR

[5] R. Utiyama, Phys. Rev., 101:5 (1956), 1597–1607 ; R. Utiyama, “Invariantnaya teoriya vzaimodeistviya”, Elementarnye chastitsy i kompensiruyuschie polya, eds. D. Ivanenko, Mir, M., 1964, 250–273 | DOI | MR

[6] D. Ivanenko (red.), Elementarnye chastitsy i kompensiruyuschie polya, Mir, M., 1964

[7] F. M. Brodskii, D. Ivanenko, G. A. Sokolik, ZhETF, 41 (1961), 1307–1309 | MR | Zbl

[8] T. W. B. Kibble, J. Math. Phys., 2 (1961), 212–221 ; T. Kibbl, “Lorents-invariantnost i gravitatsionnoe pole”, Elementarnye chastitsy i kompensiruyuschie polya, eds. D. Ivanenko, Mir, M., 1964, 274–298 | DOI | MR | Zbl

[9] B. N. Frolov, Vestn. MGU. Ser. fiz., astron., 1963, no. 6, 48–58 | MR | Zbl

[10] B. N. Frolov, “Sovremennye problemy gravitatsii”, Sb. trudov II Sov. gravitats. konf., Izd-vo Tbil. un-ta, Tbilisi, 1967, 270–278 | MR

[11] Y. M. Cho, Phys. Rev. D, 14:12 (1976), 3335–3340 | DOI

[12] F. W. Hehl, P. von der Heyde, G. D. Kerlick, J. M. Nester, Rev. Modern Phys., 48:3 (1976), 393–416 | DOI | MR

[13] F. G. Basombrio, Gen. Relativity Gravitation, 12:2 (1980), 109–136 | DOI | MR

[14] D. Ivanenko, G. Sardanashvily, Phys. Rep., 94:1 (1983), 1–45 | DOI | MR

[15] F. W. Hehl, J. L. McCrea, E. W. Mielke, Yu. Ne'eman, Phys. Rep., 258:1–2 (1995), 1–171 | DOI | MR

[16] G. Sardanashvily, On the geometric foundation of classical gauge gravitational theory, arXiv: gr-qc/0201074

[17] R. T. Hammond, Rep. Progr. Phys., 65:5 (2002), 599–649 | DOI | MR

[18] B. N. Frolov, Problemy teorii gravitatsii s kvadratichnymi lagranzhianami v prostranstvakh s krucheniem i nemetrichnostyu, Diss. $\dots$ doktora fiz.-matem. nauk, MGU, M., 1999

[19] Yu. N. Obukhov, Internat. J. Geom. Meth. Modern Phys., 3:1 (2006), 95–137 ; arXiv: gr-qc/0601090 | DOI | MR

[20] B. N. Frolov, Puankare-kalibrovochnaya teoriya gravitatsii, MPGU, M., 2003

[21] B. N. Frolov, “Physical Interpretations of Relativity Theory”, Proc. Int. Sci. Meeting PIRT-2003, Moscow, Liverpool, Sunderland, 2003, 213–219

[22] B. N. Frolov, Gravit. Cosmol., 10:1–2 (2004), 116–120 | MR | Zbl

[23] O. V. Babourova, B. N. Frolov, V. Ch. Zhukovsky, Phys. Rev. D, 74:6 (2006), 064012 ; arXiv: hep-th/0508088 | DOI | MR

[24] V. Aldaya, E. Sánchez-Sastre, J. Phys. A, 39:7 (2006), 1729–1742 | DOI | MR | Zbl

[25] Y. Mao, M. Tegmark, A. Guth, S. Cabi, Phys. Rev. D, 76:10 (2007), 104029 ; arXiv: gr-qc/0608121v3 | DOI | MR

[26] G. Veil, Prostranstvo, vremya, materiya, Yanus, M., 1996 | MR | MR | Zbl

[27] J. M. Charap, W. Tait, Proc. Roy. Soc. Lond. Ser. A, 340:1622 (1974), 249–262 | DOI | MR | Zbl

[28] M. Kasuya, Nuovo Cimento B, 28:1 (1975), 127–137 | DOI | MR

[29] N. P. Konopleva, V. N. Popov, Kalibrovochnye polya, Atomizdat, M., 1980 | MR | MR | Zbl

[30] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya, Nauka, M., 1979 | MR | MR | Zbl

[31] D. Gregorash, G. Papini, Nuovo Cimento B, 55:1 (1980), 37–51 | DOI | MR

[32] M. Nishioka, Fortschr. Phys., 33:4 (1985), 241–257 | DOI | MR

[33] P. A. M. Dirac, Proc. Roy. Soc. Lond. Ser. A, 333:1595 (1973), 403–418 | DOI | MR

[34] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR | MR | Zbl

[35] G. Mack, A. Salam, Ann. Physics, 53:1 (1969), 174–202 | DOI | MR

[36] O. V. Babourova, B. N. Frolov, Modern Phys. Lett. A, 12:38 (1997), 2943–2950 ; arXiv: gr-qc/9708006 | DOI | MR | Zbl | MR

[37] R. W. Tucker, C. Wang, Class. Quantum Gravity, 15:4 (1998), 933–954 ; arXiv: gr-qc/9612019 | DOI | MR | Zbl

[38] O. V. Babourova, B. N. Frolov, Class. Quantum Gravity, 20:8 (2003), 1423–1441 ; arXiv: gr-qc/0209077 | DOI | MR | Zbl

[39] E. Lubkin, Ann. Physics, 23:2 (1963), 233–283 | DOI | MR

[40] R. Utiyama, Progr. Theoret. Phys., 50:6 (1973), 2080–2090 | DOI | MR | Zbl

[41] P. G. O. Freund, Ann. Phys., 84:1–2 (1974), 440–454 | DOI

[42] R. Utiyama, Gen. Relativity Gravitation, 6:1 (1975), 41–47 | DOI | MR

[43] B. N. Frolov, “Generalized conformal invariance and gauge theory of gravity”, Gravity, Particles and Space-Time, eds. P. Pronin, G. Sardanashvily, World Scientific, Singapore, 1996, 113–144 | DOI | MR