One-loop effective action in the~$\mathcal N=2$ supersymmetric
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 22-40

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the $\mathcal N=2$ supersymmetric massive Yang–Mills field theory formulated in the $\mathcal N=2$ harmonic superspace. We present various gauge-invariant forms of writing the mass term in the action (in particular, using the Stueckelberg superfield), which result in dual formulations of the theory. We develop a gauge-invariant and explicitly supersymmetric scheme of the loop expansion of the superfield effective action beyond the mass shell. In the framework of this scheme, we calculate gauge-invariant and explicitly $\mathcal N=2$ supersymmetric one-loop counterterms including new counterterms depending on the Stueckelberg superfield. We analyze the component structure of one of these counterterms.
@article{TMF_2008_157_1_a2,
     author = {I. L. Buchbinder and N. G. Pletnev},
     title = {One-loop effective action in the~$\mathcal N=2$ supersymmetric},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {22--40},
     publisher = {mathdoc},
     volume = {157},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a2/}
}
TY  - JOUR
AU  - I. L. Buchbinder
AU  - N. G. Pletnev
TI  - One-loop effective action in the~$\mathcal N=2$ supersymmetric
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 22
EP  - 40
VL  - 157
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a2/
LA  - ru
ID  - TMF_2008_157_1_a2
ER  - 
%0 Journal Article
%A I. L. Buchbinder
%A N. G. Pletnev
%T One-loop effective action in the~$\mathcal N=2$ supersymmetric
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 22-40
%V 157
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a2/
%G ru
%F TMF_2008_157_1_a2
I. L. Buchbinder; N. G. Pletnev. One-loop effective action in the~$\mathcal N=2$ supersymmetric. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 22-40. http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a2/