Systems of $sl(2,\mathbb{C})$ tops as two-particle systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 8-21
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that Euler–Arnold tops on the algebra $sl(2,\mathbb C)$ are equivalent to
a two-particle system of Calogero type. We show that an arbitrary quadratic
Hamiltonian of an $sl(2,\mathbb C)$ top can be reduced to one of the three canonical
Hamiltonians using the automorphism group of the algebra. For each canonical
Hamiltonian, we obtain the corresponding two-particle system and write
the bosonization formulas for the coadjoint orbits explicitly. We discuss
the relation of the obtained formulas to nondynamical Antonov–Zabrodin–Hasegawa
$R$-matrices for Calogero–Sutherland systems.
Keywords:
integrable system, Euler–Arnold top
Mots-clés : Calogero–Moser system.
Mots-clés : Calogero–Moser system.
@article{TMF_2008_157_1_a1,
author = {A. V. Smirnov},
title = {Systems of $sl(2,\mathbb{C})$ tops as two-particle systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {8--21},
publisher = {mathdoc},
volume = {157},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a1/}
}
A. V. Smirnov. Systems of $sl(2,\mathbb{C})$ tops as two-particle systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 8-21. http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a1/