Systems of $sl(2,\mathbb{C})$ tops as two-particle systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 8-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that Euler–Arnold tops on the algebra $sl(2,\mathbb C)$ are equivalent to a two-particle system of Calogero type. We show that an arbitrary quadratic Hamiltonian of an $sl(2,\mathbb C)$ top can be reduced to one of the three canonical Hamiltonians using the automorphism group of the algebra. For each canonical Hamiltonian, we obtain the corresponding two-particle system and write the bosonization formulas for the coadjoint orbits explicitly. We discuss the relation of the obtained formulas to nondynamical Antonov–Zabrodin–Hasegawa $R$-matrices for Calogero–Sutherland systems.
Keywords: integrable system, Euler–Arnold top
Mots-clés : Calogero–Moser system.
@article{TMF_2008_157_1_a1,
     author = {A. V. Smirnov},
     title = {Systems of $sl(2,\mathbb{C})$ tops as two-particle systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {8--21},
     year = {2008},
     volume = {157},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a1/}
}
TY  - JOUR
AU  - A. V. Smirnov
TI  - Systems of $sl(2,\mathbb{C})$ tops as two-particle systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 8
EP  - 21
VL  - 157
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a1/
LA  - ru
ID  - TMF_2008_157_1_a1
ER  - 
%0 Journal Article
%A A. V. Smirnov
%T Systems of $sl(2,\mathbb{C})$ tops as two-particle systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 8-21
%V 157
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a1/
%G ru
%F TMF_2008_157_1_a1
A. V. Smirnov. Systems of $sl(2,\mathbb{C})$ tops as two-particle systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 8-21. http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a1/

[1] A. Levin, M. Olshanetsky, A. Zotov, Comm. Math. Phys., 236:1 (2003), 93–133 | DOI | MR | Zbl

[2] N. Hitchin, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR | Zbl

[3] A. Gorsky, N. Nekrasov, Nucl. Phys. B, 414:1–2 (1994), 213–238 ; arXiv: hep-th/9304047 | DOI | MR | Zbl

[4] A. Gorsky, N. Nekrasov, Elliptic Calogero–Moser system from two dimensional current algebra, arXiv: hep-th/9401021

[5] N. Nekrasov, Comm. Math. Phys., 180:3 (1996), 587–604 | DOI | MR | Zbl

[6] A. Antonov, K. Hasegawa, A. Zabrodin, Nucl. Phys. B, 503:3 (1997), 747–770 ; arXiv: hep-th/9704074 | DOI | MR | Zbl

[7] A. Gorsky, A. Zabrodin, J. Phys. A, 26:15 (1993), L635–L639 ; arXiv: hep-th/9303026 | DOI | MR | Zbl