Systems of $sl(2,\mathbb{C})$ tops as two-particle systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 8-21
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that Euler–Arnold tops on the algebra $sl(2,\mathbb C)$ are equivalent to a two-particle system of Calogero type. We show that an arbitrary quadratic Hamiltonian of an $sl(2,\mathbb C)$ top can be reduced to one of the three canonical Hamiltonians using the automorphism group of the algebra. For each canonical Hamiltonian, we obtain the corresponding two-particle system and write the bosonization formulas for the coadjoint orbits explicitly. We discuss the relation of the obtained formulas to nondynamical Antonov–Zabrodin–Hasegawa $R$-matrices for Calogero–Sutherland systems.
Keywords:
integrable system, Euler–Arnold top
Mots-clés : Calogero–Moser system.
Mots-clés : Calogero–Moser system.
@article{TMF_2008_157_1_a1,
author = {A. V. Smirnov},
title = {Systems of $sl(2,\mathbb{C})$ tops as two-particle systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {8--21},
year = {2008},
volume = {157},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a1/}
}
A. V. Smirnov. Systems of $sl(2,\mathbb{C})$ tops as two-particle systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 8-21. http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a1/
[1] A. Levin, M. Olshanetsky, A. Zotov, Comm. Math. Phys., 236:1 (2003), 93–133 | DOI | MR | Zbl
[2] N. Hitchin, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR | Zbl
[3] A. Gorsky, N. Nekrasov, Nucl. Phys. B, 414:1–2 (1994), 213–238 ; arXiv: hep-th/9304047 | DOI | MR | Zbl
[4] A. Gorsky, N. Nekrasov, Elliptic Calogero–Moser system from two dimensional current algebra, arXiv: hep-th/9401021
[5] N. Nekrasov, Comm. Math. Phys., 180:3 (1996), 587–604 | DOI | MR | Zbl
[6] A. Antonov, K. Hasegawa, A. Zabrodin, Nucl. Phys. B, 503:3 (1997), 747–770 ; arXiv: hep-th/9704074 | DOI | MR | Zbl
[7] A. Gorsky, A. Zabrodin, J. Phys. A, 26:15 (1993), L635–L639 ; arXiv: hep-th/9303026 | DOI | MR | Zbl