Systems of $sl(2,\mathbb{C})$ tops as two-particle systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 8-21

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that Euler–Arnold tops on the algebra $sl(2,\mathbb C)$ are equivalent to a two-particle system of Calogero type. We show that an arbitrary quadratic Hamiltonian of an $sl(2,\mathbb C)$ top can be reduced to one of the three canonical Hamiltonians using the automorphism group of the algebra. For each canonical Hamiltonian, we obtain the corresponding two-particle system and write the bosonization formulas for the coadjoint orbits explicitly. We discuss the relation of the obtained formulas to nondynamical Antonov–Zabrodin–Hasegawa $R$-matrices for Calogero–Sutherland systems.
Keywords: integrable system, Euler–Arnold top
Mots-clés : Calogero–Moser system.
@article{TMF_2008_157_1_a1,
     author = {A. V. Smirnov},
     title = {Systems of $sl(2,\mathbb{C})$ tops as two-particle systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {8--21},
     publisher = {mathdoc},
     volume = {157},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a1/}
}
TY  - JOUR
AU  - A. V. Smirnov
TI  - Systems of $sl(2,\mathbb{C})$ tops as two-particle systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 8
EP  - 21
VL  - 157
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a1/
LA  - ru
ID  - TMF_2008_157_1_a1
ER  - 
%0 Journal Article
%A A. V. Smirnov
%T Systems of $sl(2,\mathbb{C})$ tops as two-particle systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 8-21
%V 157
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a1/
%G ru
%F TMF_2008_157_1_a1
A. V. Smirnov. Systems of $sl(2,\mathbb{C})$ tops as two-particle systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 157 (2008) no. 1, pp. 8-21. http://geodesic.mathdoc.fr/item/TMF_2008_157_1_a1/