Power and exponential asymptotic forms of correlation functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 454-464 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the Ornstein–Zernike equation, we obtain two asymptotic equations, one describing the exponential asymptotic behavior and the other describing the power asymptotic behavior of the total correlation function $h(r)$. We show that the exponential asymptotic form is applicable only on a bounded distance interval $l. The power asymptotic form is always applicable for $r>L$ and reproduces the form of the interaction potential. In this case, as the density of a rarified gas decreases, $L\to l$, the exponential asymptotic form vanishes, and only the power asymptotic form remains. Conversely, as the critical point is approached, $L\to\infty$, and the applicability domain of the exponential asymptotic form increases without bound.
Keywords: asymptotic form, correlation function, Ornstein–Zernike equation.
@article{TMF_2008_156_3_a9,
     author = {G. A. Martynov},
     title = {Power and exponential asymptotic forms of correlation functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {454--464},
     year = {2008},
     volume = {156},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a9/}
}
TY  - JOUR
AU  - G. A. Martynov
TI  - Power and exponential asymptotic forms of correlation functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 454
EP  - 464
VL  - 156
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a9/
LA  - ru
ID  - TMF_2008_156_3_a9
ER  - 
%0 Journal Article
%A G. A. Martynov
%T Power and exponential asymptotic forms of correlation functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 454-464
%V 156
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a9/
%G ru
%F TMF_2008_156_3_a9
G. A. Martynov. Power and exponential asymptotic forms of correlation functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 454-464. http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a9/

[1] J. E. Enderby, T. Gaskell, N. H. March, Proc. Phys. Soc., 85 (1965), 217–221 | DOI | Zbl

[2] E. M. Apfelbaum, V. S. Vorob'ev, G. A. Martynov, J. Chem. Phys., 127:6 (2007), 064507 | DOI

[3] C. Domb, The Critical Point: A Historical Introduction to the Modern Theory of Critical Phenomena, Taylor and Francis, London, Bristol, 1996

[4] R. Evans, T. J. Sluckin, J. Phys. C, 14:19 (1981), 2569–2579 | DOI

[5] R. J. Leote de Carvalho, R. J. F. Evans, D. C. Hoyle, J. R. Henderson, J. Phys.: Condens. Matter, 6 (1994), 9275–9294 | DOI

[6] T. Morita, K. Hiroike, Progr. Theoret. Phys., 23:6 (1960), 1003–1027 ; 24:2 (1960), 317–330 ; 25:4 (1961), 537–578 | DOI | MR | Zbl | DOI | MR | DOI | MR

[7] G. A. Martynov, TMF, 22:1 (1975), 85–96 | DOI

[8] G. A. Martynov, Fundamental Theory of Liquids, Adam Hilger, Bristol, New York, 1992 | MR

[9] G. A. Martynov, UFN, 169:6 (1999), 595–624 | DOI | MR

[10] G. N. Sarkisov, UFN, 169:6 (1999), 625–642 | DOI