Power and exponential asymptotic forms of correlation functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 454-464

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Ornstein–Zernike equation, we obtain two asymptotic equations, one describing the exponential asymptotic behavior and the other describing the power asymptotic behavior of the total correlation function $h(r)$. We show that the exponential asymptotic form is applicable only on a bounded distance interval $l$. The power asymptotic form is always applicable for $r>L$ and reproduces the form of the interaction potential. In this case, as the density of a rarified gas decreases, $L\to l$, the exponential asymptotic form vanishes, and only the power asymptotic form remains. Conversely, as the critical point is approached, $L\to\infty$, and the applicability domain of the exponential asymptotic form increases without bound.
Keywords: asymptotic form, correlation function, Ornstein–Zernike equation.
@article{TMF_2008_156_3_a9,
     author = {G. A. Martynov},
     title = {Power and exponential asymptotic forms of correlation functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {454--464},
     publisher = {mathdoc},
     volume = {156},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a9/}
}
TY  - JOUR
AU  - G. A. Martynov
TI  - Power and exponential asymptotic forms of correlation functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 454
EP  - 464
VL  - 156
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a9/
LA  - ru
ID  - TMF_2008_156_3_a9
ER  - 
%0 Journal Article
%A G. A. Martynov
%T Power and exponential asymptotic forms of correlation functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 454-464
%V 156
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a9/
%G ru
%F TMF_2008_156_3_a9
G. A. Martynov. Power and exponential asymptotic forms of correlation functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 454-464. http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a9/