Using the~Renyi entropy to describe quantum dissipative systems in
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 444-453
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop a formalism for describing quantum dissipative systems in
statistical mechanics based on the quantum Renyi entropy. We derive
the quantum Renyi distribution from the principle of maximum quantum Renyi
entropy and differentiate this distribution (the temperature density
matrix) with respect to the inverse temperature to obtain the Bloch
equation. We then use the Feynman path integral with a modified Mensky
functional to obtain a Lindblad-type equation. From this equation using
projection operators, we derive the integro-differential equation for
the reduced temperature statistical operator, an analogue of the Zwanzig equation
in statistical mechanics, and find its formal solution in the form of a
series in the class of summable functions.
Keywords:
quantum Renyi entropy, quantum Renyi distribution, Bloch equation for quantum Renyi distribution, Lindblad equation, quantum dissipative system.
Mots-clés : Zwanzig equation
Mots-clés : Zwanzig equation
@article{TMF_2008_156_3_a8,
author = {V. S. Kirchanov},
title = {Using {the~Renyi} entropy to describe quantum dissipative systems in},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {444--453},
publisher = {mathdoc},
volume = {156},
number = {3},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a8/}
}
V. S. Kirchanov. Using the~Renyi entropy to describe quantum dissipative systems in. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 444-453. http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a8/