Fertile HC models with three states on a Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 412-424 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider fertile hard-core (HC) models with three states on a homogeneous Cayley tree. It is known that four types of such models exist. For these models, we describe the translation-invariant and periodic HC Gibbs measures. We also construct a uncountable set of nonperiodic Gibbs measures.
Keywords: Cayley tree, HC model, Gibbs measure.
Mots-clés : configuration
@article{TMF_2008_156_3_a6,
     author = {U. A. Rozikov and Sh. A. Shoyusupov},
     title = {Fertile {HC} models with three states on {a~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {412--424},
     year = {2008},
     volume = {156},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a6/}
}
TY  - JOUR
AU  - U. A. Rozikov
AU  - Sh. A. Shoyusupov
TI  - Fertile HC models with three states on a Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 412
EP  - 424
VL  - 156
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a6/
LA  - ru
ID  - TMF_2008_156_3_a6
ER  - 
%0 Journal Article
%A U. A. Rozikov
%A Sh. A. Shoyusupov
%T Fertile HC models with three states on a Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 412-424
%V 156
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a6/
%G ru
%F TMF_2008_156_3_a6
U. A. Rozikov; Sh. A. Shoyusupov. Fertile HC models with three states on a Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 412-424. http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a6/

[1] G. Brightwell, P. Winkler, J. Combin. Theory Ser. B, 77:2 (1999), 221–262 | DOI | MR | Zbl

[2] G. Brightwell, O. Häggström, P. Winkler, J. Statist. Phys., 94:3–4 (1999), 415–435 | DOI | MR | Zbl

[3] H. O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Stud. Math., 9, Walter de Gruyter, Berlin, 1988 | MR | Zbl

[4] J. Martin, U. A. Rozikov, Yu. M. Suhov, J. Nonlinear Math. Phys., 12:3 (2005), 432–448 | DOI | MR | Zbl

[5] U. A. Rozikov, Yu. M. Suhov, Queueing Syst., 46:1–2 (2004), 197–212 | DOI | MR | Zbl

[6] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | MR | Zbl

[7] H. Kesten, Adv. Appl. Probab., 2:1 (1970), 1–82 | DOI | MR | Zbl

[8] S. Zachary, Ann. Probab., 11:4 (1983), 894–903 | DOI | MR | Zbl

[9] S. Zachary, Stochastic Process. Appl., 20:2 (1985), 247–256 | DOI | MR | Zbl

[10] U. A. Rozikov, Sib. matem. zhurn., 39:2 (1998), 427–435 | DOI | MR | Zbl

[11] U. A. Rozikov, TMF, 118:1 (1999), 95–104 | DOI | MR | Zbl

[12] U. A. Rozikov, Sh. A. Shoyusupov, TMF, 149:1 (2006), 18–31 | DOI | MR | Zbl

[13] P. M. Blekher, N. N. Ganikhodzhaev, TVP, 35:2 (1990), 220–230 | DOI | MR | Zbl