Shapovalov determinant for loop superalgebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 378-397 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Kac–Moody superalgebra associated with the loop superalgebra with values in a finite-dimensional Lie superalgebra $\mathfrak g$, we show what its quadratic Casimir element is equal to if the Casimir element for $\mathfrak g$ is known (if $\mathfrak g$ has an even invariant supersymmetric bilinear form). The main tool is the Wick normal form of the even quadratic Casimir operator for the Kac–Moody superalgebra associated with $\mathfrak g$; this Wick normal form is independently interesting. If $\mathfrak g$ has an odd invariant supersymmetric bilinear form, then we compute the cubic Casimir element. In addition to the simple Lie superalgebras $\mathfrak g=\mathfrak g(A)$ with a Cartan matrix $A$ for which the Shapovalov determinant was known, we consider the Poisson Lie superalgebra $\mathfrak{poi}(0\mid n)$ and the related Kac–Moody superalgebra.
Keywords: Lie superalgebra, Shapovalov determinant.
@article{TMF_2008_156_3_a4,
     author = {A. V. Lebedev and D. A. Leites},
     title = {Shapovalov determinant for loop superalgebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {378--397},
     year = {2008},
     volume = {156},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a4/}
}
TY  - JOUR
AU  - A. V. Lebedev
AU  - D. A. Leites
TI  - Shapovalov determinant for loop superalgebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 378
EP  - 397
VL  - 156
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a4/
LA  - ru
ID  - TMF_2008_156_3_a4
ER  - 
%0 Journal Article
%A A. V. Lebedev
%A D. A. Leites
%T Shapovalov determinant for loop superalgebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 378-397
%V 156
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a4/
%G ru
%F TMF_2008_156_3_a4
A. V. Lebedev; D. A. Leites. Shapovalov determinant for loop superalgebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 378-397. http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a4/

[1] Ph. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Grad. Texts Contemp. Phys., Springer, New York, 1997 | DOI | MR | Zbl

[2] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[3] Vl. S. Dotsenko, V. A. Fateev, Nucl. Phys. B, 240:3 (1984), 312–348 | DOI | MR

[4] V. Kac, “Some problems on infinite-dimensional Lie algebras and their representations”, Lie Algebras and Related Topics, Lecture Notes in Math., 933, ed. D. Winter, Springer, Berlin, 1982, 117–126 | DOI | MR | Zbl

[5] P. Goddard, D. Olive, Nucl. Phys. B, 257:2 (1985), 226–252 | DOI | MR | Zbl

[6] V. G. Knizhnik, A. B. Zamolodchikov, Nucl. Phys. B, 247:1 (1984), 83–103 | DOI | MR | Zbl

[7] V. Kac, M. Wakimoto, Adv. Math., 185:2 (2004), 400–458 ; Adv. Math., 193:2 (2005), 453–455 | DOI | MR | Zbl | DOI | MR

[8] P. Grozman, A. Lebedev, D. Leites, The Shapovalov determinant for stringy Lie superalgebras, in preparation

[9] V. G. Kac, D. A. Kazhdan, Adv. Math., 34:1 (1979), 97–108 | DOI | MR | Zbl

[10] P. Grozman, D. Leites, J. Nonlinear Math. Phys., 8:2 (2001), 220–228 ; arXiv: math.QA/0104287 | DOI | MR | Zbl

[11] M. Gorelik, On a generic Verma module at the critical level over affine Lie superalgebras, arXiv: math.RT/0504253 | MR

[12] B. B. Shoikhet, J. Math. Sci. (New York), 92:2 (1998), 3764–3806 ; arXiv: q-alg/9703029 | DOI | MR | Zbl

[13] M. Gorelik, V. Serganova, “Shapovalov forms for Poisson Lie superalgebras”, Noncommutative Geometry and Representation Theory in Mathematical Physics, Contemp. Math., 391, eds. J. Fuchs, J. Mickelsson, G. Rozenblioum et al., AMS, Providence, RI, 2005, 111–121 | DOI | MR | Zbl

[14] P. Grozman, D. Leites, “Lie superalgebras of supermatrices of complex size. Their generalizations and related integrable systems”, Complex Analysis and Related Topics, Oper. Theory Adv. Appl., 114, eds. E. Ramírez de Arellano, M. Shapiro, L. Tovar, N. Vasilevski, Birkhäuser, 2000, 73–105 ; arXiv: math.RT/0202177 | MR | Zbl

[15] S. E. Konstein, Resenhas, 6:2–3 (2004), 249–255 ; ; S. E. Konstein, M. A. Vasiliev, J. Math. Phys., 37:6 (1996), 2872–2891 ; arXiv: math-ph/0112063arXiv: math-ph/9904032 | MR | Zbl | DOI | MR | Zbl

[16] M. Gorelik, Shapovalov determinants of Q-type Lie superalgebras, arXiv: math.RT/0511623

[17] P. Grozman, D. Leites, I. Shchepochkina, Acta Math. Vietnam., 26:1 (2001), 27–63 ; arXiv: hep-th/9702120 | MR | Zbl

[18] M. Gorelik, V. Serganova, “On representations of affine superalgebras $\mathfrak{q}(n)^{(2)}$”, Mosc. Math. J., 8:1 (2008), 91–109

[19] P. Deligne, P. Etingof, D. S. Freed et al. (eds.), Quantum Fields and Strings: a Course for Mathematicians, V. 1, 2, AMS, Providence, RI, 1999 | MR | Zbl

[20] V. A. Bunegina, T. N. Naumova, A. L. Onischik, “Podalgebry Kartana v superalgebrakh Li”, Voprosy teorii grupp i gomologicheskoi algebry, ed. A. L. Onischik, Yaroslav. gos. un-t, Yaroslavl, 1989, 99–104 | MR | Zbl

[21] I. Penkov, V. Serganova, Internat. J. Math., 5:3 (1994), 389–419 | DOI | MR | Zbl

[22] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl

[23] V. I. Feigin, D. A. Leites, V. V. Serganova, “Superalgebry Katsa–Mudi”, Teoretiko-gruppovye metody v fizike, T. 1 (Zvenigorod, 1982), eds. M. A. Markov, Nauka, M., 1983, 274–278 | MR | Zbl

[24] V. V. Serganova, Izv. RAN. Ser. matem., 48:3 (1984), 585–598 | MR | Zbl

[25] I. Musson, Represent. Theory, 1 (1997), 405–423 | DOI | MR | Zbl