@article{TMF_2008_156_3_a4,
author = {A. V. Lebedev and D. A. Leites},
title = {Shapovalov determinant for loop superalgebras},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {378--397},
year = {2008},
volume = {156},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a4/}
}
A. V. Lebedev; D. A. Leites. Shapovalov determinant for loop superalgebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 378-397. http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a4/
[1] Ph. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Grad. Texts Contemp. Phys., Springer, New York, 1997 | DOI | MR | Zbl
[2] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl
[3] Vl. S. Dotsenko, V. A. Fateev, Nucl. Phys. B, 240:3 (1984), 312–348 | DOI | MR
[4] V. Kac, “Some problems on infinite-dimensional Lie algebras and their representations”, Lie Algebras and Related Topics, Lecture Notes in Math., 933, ed. D. Winter, Springer, Berlin, 1982, 117–126 | DOI | MR | Zbl
[5] P. Goddard, D. Olive, Nucl. Phys. B, 257:2 (1985), 226–252 | DOI | MR | Zbl
[6] V. G. Knizhnik, A. B. Zamolodchikov, Nucl. Phys. B, 247:1 (1984), 83–103 | DOI | MR | Zbl
[7] V. Kac, M. Wakimoto, Adv. Math., 185:2 (2004), 400–458 ; Adv. Math., 193:2 (2005), 453–455 | DOI | MR | Zbl | DOI | MR
[8] P. Grozman, A. Lebedev, D. Leites, The Shapovalov determinant for stringy Lie superalgebras, in preparation
[9] V. G. Kac, D. A. Kazhdan, Adv. Math., 34:1 (1979), 97–108 | DOI | MR | Zbl
[10] P. Grozman, D. Leites, J. Nonlinear Math. Phys., 8:2 (2001), 220–228 ; arXiv: math.QA/0104287 | DOI | MR | Zbl
[11] M. Gorelik, On a generic Verma module at the critical level over affine Lie superalgebras, arXiv: math.RT/0504253 | MR
[12] B. B. Shoikhet, J. Math. Sci. (New York), 92:2 (1998), 3764–3806 ; arXiv: q-alg/9703029 | DOI | MR | Zbl
[13] M. Gorelik, V. Serganova, “Shapovalov forms for Poisson Lie superalgebras”, Noncommutative Geometry and Representation Theory in Mathematical Physics, Contemp. Math., 391, eds. J. Fuchs, J. Mickelsson, G. Rozenblioum et al., AMS, Providence, RI, 2005, 111–121 | DOI | MR | Zbl
[14] P. Grozman, D. Leites, “Lie superalgebras of supermatrices of complex size. Their generalizations and related integrable systems”, Complex Analysis and Related Topics, Oper. Theory Adv. Appl., 114, eds. E. Ramírez de Arellano, M. Shapiro, L. Tovar, N. Vasilevski, Birkhäuser, 2000, 73–105 ; arXiv: math.RT/0202177 | MR | Zbl
[15] S. E. Konstein, Resenhas, 6:2–3 (2004), 249–255 ; ; S. E. Konstein, M. A. Vasiliev, J. Math. Phys., 37:6 (1996), 2872–2891 ; arXiv: math-ph/0112063arXiv: math-ph/9904032 | MR | Zbl | DOI | MR | Zbl
[16] M. Gorelik, Shapovalov determinants of Q-type Lie superalgebras, arXiv: math.RT/0511623
[17] P. Grozman, D. Leites, I. Shchepochkina, Acta Math. Vietnam., 26:1 (2001), 27–63 ; arXiv: hep-th/9702120 | MR | Zbl
[18] M. Gorelik, V. Serganova, “On representations of affine superalgebras $\mathfrak{q}(n)^{(2)}$”, Mosc. Math. J., 8:1 (2008), 91–109
[19] P. Deligne, P. Etingof, D. S. Freed et al. (eds.), Quantum Fields and Strings: a Course for Mathematicians, V. 1, 2, AMS, Providence, RI, 1999 | MR | Zbl
[20] V. A. Bunegina, T. N. Naumova, A. L. Onischik, “Podalgebry Kartana v superalgebrakh Li”, Voprosy teorii grupp i gomologicheskoi algebry, ed. A. L. Onischik, Yaroslav. gos. un-t, Yaroslavl, 1989, 99–104 | MR | Zbl
[21] I. Penkov, V. Serganova, Internat. J. Math., 5:3 (1994), 389–419 | DOI | MR | Zbl
[22] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl
[23] V. I. Feigin, D. A. Leites, V. V. Serganova, “Superalgebry Katsa–Mudi”, Teoretiko-gruppovye metody v fizike, T. 1 (Zvenigorod, 1982), eds. M. A. Markov, Nauka, M., 1983, 274–278 | MR | Zbl
[24] V. V. Serganova, Izv. RAN. Ser. matem., 48:3 (1984), 585–598 | MR | Zbl
[25] I. Musson, Represent. Theory, 1 (1997), 405–423 | DOI | MR | Zbl