@article{TMF_2008_156_3_a1,
author = {Yu. M. Zinoviev},
title = {Lorentz-covariant distributions with spectral conditions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {328--350},
year = {2008},
volume = {156},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a1/}
}
Yu. M. Zinoviev. Lorentz-covariant distributions with spectral conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 328-350. http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a1/
[1] A. S. Wightman, L. Gårding, Ark. Fys., 28 (1965), 129–189 | Zbl
[2] R. Striter, A. S. Vaitman, RST, spin i statistika i vse takoe, Nauka, M., 1966 | MR | Zbl
[3] R. Iost, Obschaya teoriya kvantovannykh polei, Mir, M., 1967 | MR | MR | Zbl
[4] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR | MR | Zbl
[5] P. D. Methée, Comment. Math. Helv., 28:1 (1954), 225–269 | DOI | MR | Zbl
[6] L. Gårding, J. L. Lions, Nuovo Cimento, 14:1 (1959), 9–66, Suppl. | DOI | MR | Zbl
[7] Yu. M. Zinoviev, Comm. Math. Phys., 47:1 (1976), 33–42 | DOI | MR | Zbl
[8] J. Bros, H. Epstein, V. Glaser, Comm. Math. Phys., 6:2 (1967), 77–100 | DOI | MR | Zbl
[9] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965 | MR | MR | Zbl
[10] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR | MR
[11] V. V. Zharinov, TMF, 9:2 (1971), 232–239 | DOI | MR
[12] R. Narasimkhan, Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971 | MR | Zbl
[13] H. H. Bogolyubov, V. S. Vladimirov, Nauch. dokl. vysshei shkoly. Fiz.-mat. nauki, 3 (1958), 26–35
[14] H. H. Bogolyubov, V. S. Vladimirov, Nauch. dokl. vysshei shkoly. Fiz.-mat. nauki, 2 (1959), 179–179
[15] H. H. Bogolyubov, V. S. Vladimirov, “Predstavleniya $n$-tochechnykh funktsii”, Sbornik statei. 1, Posv. akad. I. M. Vinogradovu k ego 80-letiyu, Trudy MIAN, 112, Nauka, M., 1971, 5–21 | MR | Zbl
[16] Ch. Schanyui, Izv. RAN. Ser. matem., 62:1 (1998), 211–224 | DOI | MR | Zbl