Moduli spaces of solutions of a noncommutative sigma model
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 307-327
Cet article a éte moissonné depuis la source Math-Net.Ru
Using a noncommutative version of the uniton theory, we study the space of those solutions of the noncommutative $U(1)$ sigma model that are representable as finite-dimensional perturbations of the identity operator. The basic integer-valued characteristics of such solutions are their normalized energy $e$, canonical rank $r$, and minimum uniton number $u$, which always satisfy $r\le e$ and $u\le e$. Starting with the so-called BPS solutions ($u=1$), we completely describe the sets of all solutions with $r=1,2,e-1,e$ (which forces $u\le2$) and all solutions of small energy ($e\le5$). The obtained results reveal a simple but nontrivial structure of the moduli spaces and lead to a series of conjectures.
Keywords:
noncommutative sigma model, uniton theory.
@article{TMF_2008_156_3_a0,
author = {A. V. Domrin},
title = {Moduli spaces of solutions of a~noncommutative sigma model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {307--327},
year = {2008},
volume = {156},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a0/}
}
A. V. Domrin. Moduli spaces of solutions of a noncommutative sigma model. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 307-327. http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a0/
[1] W. J. Zakrzewski, Low Dimensional Sigma Models, Adam Hilger, Bristol, 1989 | MR | Zbl
[2] I. Davidov, A. G. Sergeev, UMN, 48:3 (1993), 3–96 | DOI | MR | Zbl
[3] O. Lechtenfeld, A. D. Popov, JHEP, 11 (2001), 40 | DOI | MR
[4] A. V. Domrin, O. Lechtenfeld, S. Petersen, JHEP, 03 (2005), 045 | DOI | MR
[5] A. V. Domrin, TMF, 154:2 (2008), 220–239 | DOI | MR | Zbl
[6] J. Murugan, R. Adams, JHEP, 12 (2002), 073 | DOI | MR
[7] A. M. Perelomov, Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR | MR | Zbl
[8] R. Rochberg, N. Weaver, Proc. Amer. Math. Soc., 129:9 (2001), 2679–2687 | DOI | MR | Zbl
[9] A. V. Komlov, TMF, 153:3 (2007), 347–357 | DOI | MR | Zbl