Moduli spaces of solutions of a noncommutative sigma model
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 307-327 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using a noncommutative version of the uniton theory, we study the space of those solutions of the noncommutative $U(1)$ sigma model that are representable as finite-dimensional perturbations of the identity operator. The basic integer-valued characteristics of such solutions are their normalized energy $e$, canonical rank $r$, and minimum uniton number $u$, which always satisfy $r\le e$ and $u\le e$. Starting with the so-called BPS solutions ($u=1$), we completely describe the sets of all solutions with $r=1,2,e-1,e$ (which forces $u\le2$) and all solutions of small energy ($e\le5$). The obtained results reveal a simple but nontrivial structure of the moduli spaces and lead to a series of conjectures.
Keywords: noncommutative sigma model, uniton theory.
@article{TMF_2008_156_3_a0,
     author = {A. V. Domrin},
     title = {Moduli spaces of solutions of a~noncommutative sigma model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {307--327},
     year = {2008},
     volume = {156},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a0/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - Moduli spaces of solutions of a noncommutative sigma model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 307
EP  - 327
VL  - 156
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a0/
LA  - ru
ID  - TMF_2008_156_3_a0
ER  - 
%0 Journal Article
%A A. V. Domrin
%T Moduli spaces of solutions of a noncommutative sigma model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 307-327
%V 156
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a0/
%G ru
%F TMF_2008_156_3_a0
A. V. Domrin. Moduli spaces of solutions of a noncommutative sigma model. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 3, pp. 307-327. http://geodesic.mathdoc.fr/item/TMF_2008_156_3_a0/

[1] W. J. Zakrzewski, Low Dimensional Sigma Models, Adam Hilger, Bristol, 1989 | MR | Zbl

[2] I. Davidov, A. G. Sergeev, UMN, 48:3 (1993), 3–96 | DOI | MR | Zbl

[3] O. Lechtenfeld, A. D. Popov, JHEP, 11 (2001), 40 | DOI | MR

[4] A. V. Domrin, O. Lechtenfeld, S. Petersen, JHEP, 03 (2005), 045 | DOI | MR

[5] A. V. Domrin, TMF, 154:2 (2008), 220–239 | DOI | MR | Zbl

[6] J. Murugan, R. Adams, JHEP, 12 (2002), 073 | DOI | MR

[7] A. M. Perelomov, Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR | MR | Zbl

[8] R. Rochberg, N. Weaver, Proc. Amer. Math. Soc., 129:9 (2001), 2679–2687 | DOI | MR | Zbl

[9] A. V. Komlov, TMF, 153:3 (2007), 347–357 | DOI | MR | Zbl