Problem of determining the~nonstationary potential in a~hyperbolic-type equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 220-225

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the problem of determining the hyperbolic equation coefficient depending on two variables. Some additional information is given by the trace of the direct problem solution on the hyperplane $x=0$. We estimate the stability of the solution of the inverse problem under study and prove the uniqueness theorem.
Keywords: inverse problem, hyperbolic equation, stability, uniqueness.
@article{TMF_2008_156_2_a4,
     author = {D. K. Durdiev},
     title = {Problem of determining the~nonstationary potential in a~hyperbolic-type equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {220--225},
     publisher = {mathdoc},
     volume = {156},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a4/}
}
TY  - JOUR
AU  - D. K. Durdiev
TI  - Problem of determining the~nonstationary potential in a~hyperbolic-type equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 220
EP  - 225
VL  - 156
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a4/
LA  - ru
ID  - TMF_2008_156_2_a4
ER  - 
%0 Journal Article
%A D. K. Durdiev
%T Problem of determining the~nonstationary potential in a~hyperbolic-type equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 220-225
%V 156
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a4/
%G ru
%F TMF_2008_156_2_a4
D. K. Durdiev. Problem of determining the~nonstationary potential in a~hyperbolic-type equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 220-225. http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a4/