Problem of determining the nonstationary potential in a hyperbolic-type equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 220-225
We solve the problem of determining the hyperbolic equation coefficient depending on two variables. Some additional information is given by the trace of the direct problem solution on the hyperplane $x=0$. We estimate the stability of the solution of the inverse problem under study and prove the uniqueness theorem.
Keywords:
inverse problem, hyperbolic equation, stability, uniqueness.
@article{TMF_2008_156_2_a4,
author = {D. K. Durdiev},
title = {Problem of determining the~nonstationary potential in a~hyperbolic-type equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {220--225},
year = {2008},
volume = {156},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a4/}
}
D. K. Durdiev. Problem of determining the nonstationary potential in a hyperbolic-type equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 220-225. http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a4/
[1] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR | MR | Zbl
[2] V. G. Romanov, Ustoichivost v obratnykh zadachakh, Nauchnyi mir, M., 2005 | MR | Zbl
[3] V. G. Romanov, Diff. uravneniya, 25:2 (1989), 203–209 | MR | Zbl
[4] V. G. Romanov, Dokl. AN SSSR, 304:4 (1989), 807–811 | MR | Zbl
[5] D. K. Durdiev, Sib. matem. zhurn., 35:3 (1994), 574–582 | DOI | MR | Zbl
[6] G. V. Dyatlov, Sib. matem. zhurn., 42:1 (2001), 52–59 | DOI | MR | Zbl