Problem of determining the nonstationary potential in a hyperbolic-type equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 220-225
Cet article a éte moissonné depuis la source Math-Net.Ru
We solve the problem of determining the hyperbolic equation coefficient depending on two variables. Some additional information is given by the trace of the direct problem solution on the hyperplane $x=0$. We estimate the stability of the solution of the inverse problem under study and prove the uniqueness theorem.
Keywords:
inverse problem, hyperbolic equation, stability, uniqueness.
@article{TMF_2008_156_2_a4,
author = {D. K. Durdiev},
title = {Problem of determining the~nonstationary potential in a~hyperbolic-type equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {220--225},
year = {2008},
volume = {156},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a4/}
}
D. K. Durdiev. Problem of determining the nonstationary potential in a hyperbolic-type equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 220-225. http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a4/
[1] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR | MR | Zbl
[2] V. G. Romanov, Ustoichivost v obratnykh zadachakh, Nauchnyi mir, M., 2005 | MR | Zbl
[3] V. G. Romanov, Diff. uravneniya, 25:2 (1989), 203–209 | MR | Zbl
[4] V. G. Romanov, Dokl. AN SSSR, 304:4 (1989), 807–811 | MR | Zbl
[5] D. K. Durdiev, Sib. matem. zhurn., 35:3 (1994), 574–582 | DOI | MR | Zbl
[6] G. V. Dyatlov, Sib. matem. zhurn., 42:1 (2001), 52–59 | DOI | MR | Zbl