Problem of determining the~nonstationary potential in a~hyperbolic-type equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 220-225
Voir la notice de l'article provenant de la source Math-Net.Ru
We solve the problem of determining the hyperbolic equation coefficient depending on two variables. Some additional information is given by the trace of the direct problem solution on the hyperplane $x=0$. We estimate the stability of the solution of the inverse problem under study and prove the uniqueness theorem.
Keywords:
inverse problem, hyperbolic equation, stability, uniqueness.
@article{TMF_2008_156_2_a4,
author = {D. K. Durdiev},
title = {Problem of determining the~nonstationary potential in a~hyperbolic-type equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {220--225},
publisher = {mathdoc},
volume = {156},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a4/}
}
TY - JOUR AU - D. K. Durdiev TI - Problem of determining the~nonstationary potential in a~hyperbolic-type equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2008 SP - 220 EP - 225 VL - 156 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a4/ LA - ru ID - TMF_2008_156_2_a4 ER -
D. K. Durdiev. Problem of determining the~nonstationary potential in a~hyperbolic-type equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 220-225. http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a4/