Darboux-integrable discrete systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 207-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We extend Laplace's cascade method to systems of discrete “hyperbolic” equations of the form $u_{i+1,j+1}=f(u_{i+1,j},u_{i,j+1},u_{i,j})$, where $u_{ij}$ is a member of a sequence of unknown vectors, $i,j\in\mathbb Z$. We introduce the notion of a generalized Laplace invariant and the associated property of the system being “Liouville.” We prove several statements on the well-definedness of the generalized invariant and on its use in the search for solutions and integrals of the system. We give examples of discrete Liouville-type systems.
Keywords: Laplace's cascade method, Darboux integrability, nonlinear chain.
@article{TMF_2008_156_2_a3,
     author = {V. L. Vereshchagin},
     title = {Darboux-integrable discrete systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {207--219},
     year = {2008},
     volume = {156},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a3/}
}
TY  - JOUR
AU  - V. L. Vereshchagin
TI  - Darboux-integrable discrete systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 207
EP  - 219
VL  - 156
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a3/
LA  - ru
ID  - TMF_2008_156_2_a3
ER  - 
%0 Journal Article
%A V. L. Vereshchagin
%T Darboux-integrable discrete systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 207-219
%V 156
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a3/
%G ru
%F TMF_2008_156_2_a3
V. L. Vereshchagin. Darboux-integrable discrete systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 207-219. http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a3/

[1] G. Darboux, “Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal”, Déformation infiniment petite et représentation sphérique, v. IV, Gautier-Villars, Paris, 1896, 353–548 | MR | Zbl

[2] I. M. Anderson, N. Kamran, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR | Zbl

[3] A. V. Zhiber, V. V. Sokolov, S. Ya. Startsev, Dokl. RAN, 343:6 (1995), 746–748 | MR | Zbl

[4] A. V. Zhiber, V. V. Sokolov, Metod kaskadnogo integrirovaniya Laplasa i uravneniya, integriruemye po Darbu, RITs BashGU, Ufa, 1996

[5] V. E. Adler, S. Ya. Startsev, TMF, 121:2 (1999), 271–284 | DOI | MR | Zbl

[6] R. Hirota, J. Phys. Soc. Japan, 50:11 (1981), 3785–3791 | DOI | MR

[7] D. Levi, L. Pilloni, P. M. Santini, J. Phys. A, 14:7 (1981), 1567–1575 | DOI | MR | Zbl

[8] R. S. Ward, Phys. Lett. A, 199:1–2 (1995), 45–48 | DOI | MR | Zbl

[9] R. Hirota, J. Phys. Soc. Japan, 46:1 (1979), 312–319 | DOI | MR

[10] A. V. Zhiber, V. V. Sokolov, UMN, 56:1(337) (2001), 63–106 | DOI | MR | Zbl

[11] A. M. Gureva, Metod kaskadnogo integrirovaniya Laplasa i nelineinye giperbolicheskie sistemy uravnenii, Diss. $\dots$ kand. fiz.-mat. nauk, UGATU, Ufa, 2005

[12] A. V. Zhiber, V. V. Sokolov, S. Ya. Startsev, “Nelineinye giperbolicheskie sistemy liuvillevskogo tipa”, Materialy mezhdunarodnoi konferentsii “Tikhonov-100”, 1, 2006, 1–2

[13] A. M. Gureva, A. V. Zhiber, TMF, 138:3 (2004), 401–421 | DOI | MR

[14] I. T. Khabibullin, TMF, 146:2 (2006), 208–221 | DOI | MR