Darboux-integrable discrete systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 207-219
Voir la notice de l'article provenant de la source Math-Net.Ru
We extend Laplace's cascade method to systems of discrete “hyperbolic” equations of the form $u_{i+1,j+1}=f(u_{i+1,j},u_{i,j+1},u_{i,j})$, where $u_{ij}$ is a member of a sequence of unknown vectors, $i,j\in\mathbb Z$. We introduce the notion of a generalized Laplace invariant and the associated property of the system being “Liouville.” We prove several statements on the well-definedness of the generalized invariant and on its use in the search for solutions and integrals of the system. We give examples of discrete Liouville-type systems.
Keywords:
Laplace's cascade method, Darboux integrability, nonlinear chain.
@article{TMF_2008_156_2_a3,
author = {V. L. Vereshchagin},
title = {Darboux-integrable discrete systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {207--219},
publisher = {mathdoc},
volume = {156},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a3/}
}
V. L. Vereshchagin. Darboux-integrable discrete systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 207-219. http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a3/