Darboux-integrable discrete systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 207-219

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend Laplace's cascade method to systems of discrete “hyperbolic” equations of the form $u_{i+1,j+1}=f(u_{i+1,j},u_{i,j+1},u_{i,j})$, where $u_{ij}$ is a member of a sequence of unknown vectors, $i,j\in\mathbb Z$. We introduce the notion of a generalized Laplace invariant and the associated property of the system being “Liouville.” We prove several statements on the well-definedness of the generalized invariant and on its use in the search for solutions and integrals of the system. We give examples of discrete Liouville-type systems.
Keywords: Laplace's cascade method, Darboux integrability, nonlinear chain.
@article{TMF_2008_156_2_a3,
     author = {V. L. Vereshchagin},
     title = {Darboux-integrable discrete systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {207--219},
     publisher = {mathdoc},
     volume = {156},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a3/}
}
TY  - JOUR
AU  - V. L. Vereshchagin
TI  - Darboux-integrable discrete systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 207
EP  - 219
VL  - 156
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a3/
LA  - ru
ID  - TMF_2008_156_2_a3
ER  - 
%0 Journal Article
%A V. L. Vereshchagin
%T Darboux-integrable discrete systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 207-219
%V 156
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a3/
%G ru
%F TMF_2008_156_2_a3
V. L. Vereshchagin. Darboux-integrable discrete systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 207-219. http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a3/