Integrable magnetic geodesic flows on Lie groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 189-206
Voir la notice de l'article provenant de la source Math-Net.Ru
On Lie group manifolds, we consider right-invariant magnetic geodesic flows associated with 2-cocycles of the corresponding Lie algebras. We investigate the algebra of the integrals of motion of magnetic geodesic flows and also formulate a necessary and sufficient condition for their integrability in quadratures, giving the canonical forms of 2-cocycles for all four-dimensional Lie algebras and selecting integrable cases.
Mots-clés :
Lie group, Poisson bracket.
Keywords: Lie algebra, cocycle, magnetic geodesic flow, integral of motion
Keywords: Lie algebra, cocycle, magnetic geodesic flow, integral of motion
@article{TMF_2008_156_2_a2,
author = {A. A. Magazev and I. V. Shirokov and Yu. A. Yurevich},
title = {Integrable magnetic geodesic flows on {Lie} groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {189--206},
publisher = {mathdoc},
volume = {156},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a2/}
}
TY - JOUR AU - A. A. Magazev AU - I. V. Shirokov AU - Yu. A. Yurevich TI - Integrable magnetic geodesic flows on Lie groups JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2008 SP - 189 EP - 206 VL - 156 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a2/ LA - ru ID - TMF_2008_156_2_a2 ER -
A. A. Magazev; I. V. Shirokov; Yu. A. Yurevich. Integrable magnetic geodesic flows on Lie groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 189-206. http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a2/