Keywords: Lie algebra, cocycle, magnetic geodesic flow, integral of motion
@article{TMF_2008_156_2_a2,
author = {A. A. Magazev and I. V. Shirokov and Yu. A. Yurevich},
title = {Integrable magnetic geodesic flows on {Lie} groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {189--206},
year = {2008},
volume = {156},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a2/}
}
TY - JOUR AU - A. A. Magazev AU - I. V. Shirokov AU - Yu. A. Yurevich TI - Integrable magnetic geodesic flows on Lie groups JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2008 SP - 189 EP - 206 VL - 156 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a2/ LA - ru ID - TMF_2008_156_2_a2 ER -
A. A. Magazev; I. V. Shirokov; Yu. A. Yurevich. Integrable magnetic geodesic flows on Lie groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 189-206. http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a2/
[1] A. V. Bolsinov, B. Jovanović, “Integrable geodesic flows on Riemannian manifolds: construction and obstructions”, Contemporary Geometry and Related Topics, eds. N. Bokan, M. Djoric, Z. Rakic et al., World Scientific, River Edge, NJ, 2004, 57–103 ; arXiv: math-ph/0307015 | DOI | MR | Zbl
[2] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integriruemye sistemy. I”, Dinamicheskie sistemy – 4, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundam. napr., eds. V. I. Arnold, S. P. Novikov, VINITI, M., 1985, 179–285 | MR | Zbl
[3] D. I. Efimov, Sib. matem. zhurn., 45:3 (2004), 566–576 | DOI | MR | Zbl
[4] D. I. Efimov, Sib. matem. zhurn., 46:1 (2005), 106–118 | DOI | MR | Zbl
[5] A. V. Bolsinov, B. Jovanovic, J. Phys. A, 39:16 (2006), L247–L252 ; arXiv: math-ph/0602016 | DOI | MR | Zbl
[6] M. Goto, F. Grosskhans, Poluprostye algebry Li, Mir, M., 1981 | MR | Zbl
[7] A. A. Magazev, I. V. Shirokov, TMF, 136:3 (2003), 365–379 | DOI | MR
[8] A. Z. Petrov, Prostranstva Einshteina, Nauka, M., 1961 | MR | MR | Zbl