Integrable magnetic geodesic flows on Lie groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 189-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On Lie group manifolds, we consider right-invariant magnetic geodesic flows associated with 2-cocycles of the corresponding Lie algebras. We investigate the algebra of the integrals of motion of magnetic geodesic flows and also formulate a necessary and sufficient condition for their integrability in quadratures, giving the canonical forms of 2-cocycles for all four-dimensional Lie algebras and selecting integrable cases.
Mots-clés : Lie group, Poisson bracket.
Keywords: Lie algebra, cocycle, magnetic geodesic flow, integral of motion
@article{TMF_2008_156_2_a2,
     author = {A. A. Magazev and I. V. Shirokov and Yu. A. Yurevich},
     title = {Integrable magnetic geodesic flows on {Lie} groups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {189--206},
     year = {2008},
     volume = {156},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a2/}
}
TY  - JOUR
AU  - A. A. Magazev
AU  - I. V. Shirokov
AU  - Yu. A. Yurevich
TI  - Integrable magnetic geodesic flows on Lie groups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 189
EP  - 206
VL  - 156
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a2/
LA  - ru
ID  - TMF_2008_156_2_a2
ER  - 
%0 Journal Article
%A A. A. Magazev
%A I. V. Shirokov
%A Yu. A. Yurevich
%T Integrable magnetic geodesic flows on Lie groups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 189-206
%V 156
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a2/
%G ru
%F TMF_2008_156_2_a2
A. A. Magazev; I. V. Shirokov; Yu. A. Yurevich. Integrable magnetic geodesic flows on Lie groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 189-206. http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a2/

[1] A. V. Bolsinov, B. Jovanović, “Integrable geodesic flows on Riemannian manifolds: construction and obstructions”, Contemporary Geometry and Related Topics, eds. N. Bokan, M. Djoric, Z. Rakic et al., World Scientific, River Edge, NJ, 2004, 57–103 ; arXiv: math-ph/0307015 | DOI | MR | Zbl

[2] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integriruemye sistemy. I”, Dinamicheskie sistemy – 4, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundam. napr., eds. V. I. Arnold, S. P. Novikov, VINITI, M., 1985, 179–285 | MR | Zbl

[3] D. I. Efimov, Sib. matem. zhurn., 45:3 (2004), 566–576 | DOI | MR | Zbl

[4] D. I. Efimov, Sib. matem. zhurn., 46:1 (2005), 106–118 | DOI | MR | Zbl

[5] A. V. Bolsinov, B. Jovanovic, J. Phys. A, 39:16 (2006), L247–L252 ; arXiv: math-ph/0602016 | DOI | MR | Zbl

[6] M. Goto, F. Grosskhans, Poluprostye algebry Li, Mir, M., 1981 | MR | Zbl

[7] A. A. Magazev, I. V. Shirokov, TMF, 136:3 (2003), 365–379 | DOI | MR

[8] A. Z. Petrov, Prostranstva Einshteina, Nauka, M., 1961 | MR | MR | Zbl