Description of weakly periodic Gibbs measures for the Ising model on a Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 292-302 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the concept of a weakly periodic Gibbs measure. For the Ising model, we describe a set of such measures corresponding to normal subgroups of indices two and four in the group representation of a Cayley tree. In particular, we prove that for a Cayley tree of order four, there exist critical values $T_{\mathrm{c}} of the temperature $T>0$ such that there exist five weakly periodic Gibbs measures for $0 or $T>T_{\mathrm{cr}}$, three weakly periodic Gibbs measures for $T=T_{\mathrm{c}}$, and one weakly periodic Gibbs measure for $T_{\mathrm{c}}.
Keywords: Cayley tree, Gibbs measure, Ising model, weakly periodic measure.
@article{TMF_2008_156_2_a10,
     author = {U. A. Rozikov and M. M. Rakhmatullaev},
     title = {Description of weakly periodic {Gibbs} measures for {the~Ising} model on {a~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {292--302},
     year = {2008},
     volume = {156},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a10/}
}
TY  - JOUR
AU  - U. A. Rozikov
AU  - M. M. Rakhmatullaev
TI  - Description of weakly periodic Gibbs measures for the Ising model on a Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 292
EP  - 302
VL  - 156
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a10/
LA  - ru
ID  - TMF_2008_156_2_a10
ER  - 
%0 Journal Article
%A U. A. Rozikov
%A M. M. Rakhmatullaev
%T Description of weakly periodic Gibbs measures for the Ising model on a Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 292-302
%V 156
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a10/
%G ru
%F TMF_2008_156_2_a10
U. A. Rozikov; M. M. Rakhmatullaev. Description of weakly periodic Gibbs measures for the Ising model on a Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 292-302. http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a10/

[1] P. M. Blekher, N. N. Ganikhodzhaev, TVP, 35:2 (1990), 220–230 | DOI | MR | Zbl

[2] F. Spitzer, Ann. Probab., 3:3 (1975), 387–398 | DOI | MR | Zbl

[3] S. Zachary, Ann. Probab., 11:4 (1983), 894–903 | DOI | MR | Zbl

[4] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | MR | Zbl

[5] U. A. Rozikov, TMF, 112:1 (1997), 170–175 | DOI | MR | Zbl

[6] U. A. Rozikov, TMF, 118:1 (1999), 95–104 | DOI | MR | Zbl

[7] U. A. Rozikov, Yu. M. Suhov, Inf. Dimens. Anal. Quantum Probab. Relat. Top., 9:3 (2006), 471–488 | DOI | MR | Zbl

[8] J. Martin, U. A. Rozikov, Yu. M. Suhov, J. Nonlinear Math. Phys., 12:3 (2005), 432–448 | DOI | MR | Zbl

[9] U. A. Rozikov, Sib. matem. zhurn., 39:2 (1998), 427–435 | DOI | MR | Zbl

[10] F. M. Mukhamedov, U. A. Rozikov, J. Statist. Phys., 114:3–4 (2004), 825–848 | DOI | MR | Zbl

[11] U. A. Rozikov, Sh. A. Shoyusupov, TMF, 149:1 (2006), 18–31 | DOI | MR | Zbl

[12] E. P. Normatov, U. A. Rozikov, Matem. zametki, 79:3 (2006), 434–444 | DOI | MR | Zbl