Differential equation for a~functional integral
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 184-188

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new method for calculating functional integrals in cases where the averaged (integrated) functional depends on functions of more than one variable. The method is analogous to that used by Feynman in the one-dimensional case (quantum mechanics). We consider the integration of functionals that depend on functions of two variables and are symmetric under rotations about a point in the plane. We assume that the functional integral is taken over functions defined in a finite spatial domain (in a disc of radius $r$). We obtain a differential equation describing change in the functional as the radius $r$ increases.
Keywords: functional integral, boundary conditions.
@article{TMF_2008_156_2_a1,
     author = {P. L. Rubin},
     title = {Differential equation for a~functional integral},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {184--188},
     publisher = {mathdoc},
     volume = {156},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a1/}
}
TY  - JOUR
AU  - P. L. Rubin
TI  - Differential equation for a~functional integral
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 184
EP  - 188
VL  - 156
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a1/
LA  - ru
ID  - TMF_2008_156_2_a1
ER  - 
%0 Journal Article
%A P. L. Rubin
%T Differential equation for a~functional integral
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 184-188
%V 156
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a1/
%G ru
%F TMF_2008_156_2_a1
P. L. Rubin. Differential equation for a~functional integral. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 184-188. http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a1/