Quadratic algebras related to elliptic curves
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 163-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct quadratic finite-dimensional Poisson algebras corresponding to a rank-$N$ degree-one vector bundle over an elliptic curve with $n$ marked points and also construct the quantum version of the algebras. The algebras are parameterized by the moduli of curves. For $N=2$ and $n=1$, they coincide with Sklyanin algebras. We prove that the Poisson structure is compatible with the Lie–Poisson structure defined on the direct sum of $n$ copies of $sl(N)$. The origin of the algebras is related to the Poisson reduction of canonical brackets on an affine space over the bundle cotangent to automorphism groups of vector bundles.
Mots-clés : Poisson structure
Keywords: integrable system.
@article{TMF_2008_156_2_a0,
     author = {A. V. Zotov and A. M. Levin and M. A. Olshanetsky and Yu. B. Chernyakov},
     title = {Quadratic algebras related to elliptic curves},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--183},
     year = {2008},
     volume = {156},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a0/}
}
TY  - JOUR
AU  - A. V. Zotov
AU  - A. M. Levin
AU  - M. A. Olshanetsky
AU  - Yu. B. Chernyakov
TI  - Quadratic algebras related to elliptic curves
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 163
EP  - 183
VL  - 156
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a0/
LA  - ru
ID  - TMF_2008_156_2_a0
ER  - 
%0 Journal Article
%A A. V. Zotov
%A A. M. Levin
%A M. A. Olshanetsky
%A Yu. B. Chernyakov
%T Quadratic algebras related to elliptic curves
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 163-183
%V 156
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a0/
%G ru
%F TMF_2008_156_2_a0
A. V. Zotov; A. M. Levin; M. A. Olshanetsky; Yu. B. Chernyakov. Quadratic algebras related to elliptic curves. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 163-183. http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a0/

[1] A. A. Belavin, V. G. Drinfeld, Funkts. analiz i ego pril., 16:3 (1982), 1–29 | MR | Zbl

[2] A. Belavin, Funkts. analiz i ego pril., 14:4 (1980), 18–26 | MR | Zbl

[3] E. Sklyanin, Funkts. analiz i ego pril., 16:4 (1982), 27–34 | MR | Zbl

[4] A. V. Odesskii, B. L. Feigin, Funkts. analiz i ego pril., 23:3 (1989), 45–54 | MR | Zbl

[5] K. Takasaki, Lett. Math. Phys., 44:2 (1998), 143–156 ; arXiv: hep-th/9711058 | DOI | MR | Zbl

[6] Yu. Chernyakov, A. Levin, M. Olshanetsky, A. Zotov, J. Phys. A, 39:39 (2006), 12083–12101 ; arXiv: nlin.SI/0602043 | DOI | MR | Zbl

[7] H. Braden, V. Dolgushev, M. Olshanetsky, A. Zotov, J. Phys. A, 36:25 (2003), 6979–7000 | DOI | MR | Zbl

[8] B. Khesin, A. Levin, M. Olshanetsky, Comm. Math. Phys., 250:3 (2004), 581–612 | DOI | MR | Zbl

[9] A. Levin, M. Olshanetsky, A. Zotov, Comm. Math. Phys., 268:1 (2006), 67–103 ; arXiv: math.QA/0508058 | DOI | MR | Zbl