Quadratic algebras related to elliptic curves
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 163-183
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct quadratic finite-dimensional Poisson algebras corresponding to a rank-$N$ degree-one vector bundle over an elliptic curve with $n$ marked points and also construct the quantum version of the algebras. The algebras are parameterized by the moduli of curves. For $N=2$ and $n=1$, they coincide with Sklyanin algebras. We prove that the Poisson structure is compatible with the Lie–Poisson structure defined on the direct sum of $n$ copies of $sl(N)$. The origin of the algebras is related to the Poisson reduction of canonical brackets on an affine space over the bundle cotangent to automorphism groups of vector bundles.
Mots-clés :
Poisson structure
Keywords: integrable system.
Keywords: integrable system.
@article{TMF_2008_156_2_a0,
author = {A. V. Zotov and A. M. Levin and M. A. Olshanetsky and Yu. B. Chernyakov},
title = {Quadratic algebras related to elliptic curves},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {163--183},
publisher = {mathdoc},
volume = {156},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a0/}
}
TY - JOUR AU - A. V. Zotov AU - A. M. Levin AU - M. A. Olshanetsky AU - Yu. B. Chernyakov TI - Quadratic algebras related to elliptic curves JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2008 SP - 163 EP - 183 VL - 156 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a0/ LA - ru ID - TMF_2008_156_2_a0 ER -
%0 Journal Article %A A. V. Zotov %A A. M. Levin %A M. A. Olshanetsky %A Yu. B. Chernyakov %T Quadratic algebras related to elliptic curves %J Teoretičeskaâ i matematičeskaâ fizika %D 2008 %P 163-183 %V 156 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a0/ %G ru %F TMF_2008_156_2_a0
A. V. Zotov; A. M. Levin; M. A. Olshanetsky; Yu. B. Chernyakov. Quadratic algebras related to elliptic curves. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 2, pp. 163-183. http://geodesic.mathdoc.fr/item/TMF_2008_156_2_a0/