Upper bound on the occupation time in the simple exclusion process
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 1, pp. 147-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the occupation time variance in the asymmetric exclusion process. In the case where the mean $m\ne0$ ($m$ is the mean hopping rate) and $\rho=1/2$ ($\rho$ is the filling probability for a state), we find that the variance is bounded above by $O(t^{3/2})$.
Mots-clés : exclusion process, variant formula, norm.
@article{TMF_2008_156_1_a8,
     author = {Li Zhimin and Mao Mingzhi},
     title = {Upper bound on the~occupation time in the~simple exclusion process},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {147--158},
     year = {2008},
     volume = {156},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a8/}
}
TY  - JOUR
AU  - Li Zhimin
AU  - Mao Mingzhi
TI  - Upper bound on the occupation time in the simple exclusion process
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 147
EP  - 158
VL  - 156
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a8/
LA  - ru
ID  - TMF_2008_156_1_a8
ER  - 
%0 Journal Article
%A Li Zhimin
%A Mao Mingzhi
%T Upper bound on the occupation time in the simple exclusion process
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 147-158
%V 156
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a8/
%G ru
%F TMF_2008_156_1_a8
Li Zhimin; Mao Mingzhi. Upper bound on the occupation time in the simple exclusion process. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 1, pp. 147-158. http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a8/

[1] C. Kipnis, S. R. S. Varadhan, Comm. Math. Phys., 104:1 (1986), 1–19 | DOI | MR | Zbl

[2] S. Sethuraman, Ann. Probab., 28:1 (2000), 277–302 | DOI | MR | Zbl

[3] C. Landim, S. Olla, S. R. S. Varadhan, Bull. Braz. Math. Soc., 31:3 (2000), 241–275 | DOI | MR | Zbl

[4] T. Seppäläinen, S. Sethuraman, Ann. Probab., 31:1 (2003), 148–169 | DOI | MR | Zbl

[5] S. Sethuraman, S. R. S. Varadhan, H. T. Yau, Comm. Pure. Appl. Math., 53:8 (2000), 972–1006 | 3.0.CO;2-%23 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[6] S. R. S. Varadhan, Ann. Inst. H. Poincaré Probab. Statist., 31:1 (1995), 273–285 | MR | Zbl

[7] E. Saada, Ann. Probab., 15:1 (1987), 375–381 | DOI | MR | Zbl

[8] F. Rezakhanlou, Comm. Math. Phys., 165:1 (1994), 1–32 | DOI | MR | Zbl

[9] T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Grundlehren Math. Wiss., 324, Springer, New York, 1999 | DOI | MR | Zbl

[10] C. Landim, J. Quastel, M. Salmhofer et al., Comm. Math. Phys., 244:3 (2004), 455–481 | DOI | MR | Zbl

[11] C. Kipnis, Ann. Inst. H. Poincaré Probab. Statist., 23:1 (1987), 21–35 | MR | Zbl

[12] C. Bernardin, Ann. Probab., 32:1B (2004), 855–879 | DOI | MR | Zbl

[13] S. Sethuraman, Ann. Probab., 31:1 (2003), 35–62 | DOI | MR | Zbl

[14] C. Landim, H. T. Yau, Probab. Theory Related Fields, 108:3 (1997), 321–356 | DOI | MR | Zbl