Analytic approach to the (an)harmonic crystal chains with
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 1, pp. 138-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the harmonic and anharmonic chains of oscillators with self-consistent stochastic reservoirs and derive an integral representation (à la Feynman–Kac) for the correlations, in particular, for the heat flow. For the harmonic chain, we give a new proof that its thermal conductivity is finite in the steady state. Based on this integral representation for the correlations and a perturbative analysis, the approach is quite general and can be extended to more intricate systems.
Keywords: harmonic crystal, anharmonic crystal, stochastic reservoirs, heat flow.
@article{TMF_2008_156_1_a7,
     author = {R. Falcao and A. Francisco Neto and E. Pereira},
     title = {Analytic approach to the~(an)harmonic crystal chains with},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {138--146},
     year = {2008},
     volume = {156},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a7/}
}
TY  - JOUR
AU  - R. Falcao
AU  - A. Francisco Neto
AU  - E. Pereira
TI  - Analytic approach to the (an)harmonic crystal chains with
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 138
EP  - 146
VL  - 156
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a7/
LA  - ru
ID  - TMF_2008_156_1_a7
ER  - 
%0 Journal Article
%A R. Falcao
%A A. Francisco Neto
%A E. Pereira
%T Analytic approach to the (an)harmonic crystal chains with
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 138-146
%V 156
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a7/
%G ru
%F TMF_2008_156_1_a7
R. Falcao; A. Francisco Neto; E. Pereira. Analytic approach to the (an)harmonic crystal chains with. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 1, pp. 138-146. http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a7/

[1] F. Bonetto, J. L. Lebowitz, L. Rey-Bellet, “Fourier's law: a challenge to theorists”, Mathematical Physics, eds. A. Fokas, A. Grigoryan, T. Kibble, B. Zegarlinski, Imp. Coll. Press, London, 2000, 128–150 | MR | Zbl

[2] S. Lepri, R. Livi, A. Politi, Phys. Rep., 377:1 (2003), 1–80 | DOI | MR

[3] Z. Rieder, J. L. Lebowitz, E. Lieb, J. Math. Phys., 8:5 (1967), 1073–1078 | DOI

[4] F. Bonetto, J. L. Lebowitz, J. Lukkarinen, J. Stat. Phys., 116:1–4 (2004), 783–813 | DOI | MR | Zbl

[5] E. Pereira, R. Falcao, Phys. Rev. E, 70:4 (2004), 046105 | DOI

[6] E. Pereira, R. Falcao, Phys. Rev. Lett., 96:10 (2006), 100601 | DOI

[7] A. Francisco Neto, H. C. F. Lemos, E. Pereira, J. Phys. A, 39:30 (2006), 9399–9410 | DOI | MR | Zbl

[8] F. Barros, H. C. F. Lemos, E. Pereira, Phys. Rev. E, 74:5 (2006), 052102 | DOI

[9] J. Snyders, M. Zakai, SIAM J. Appl. Math., 18:3 (1970), 704–714 | DOI | MR | Zbl

[10] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer, Berlin, 2003 | MR

[11] J. Dimock, J. Stat. Phys., 58:5–6 (1990), 1181–1207 | DOI | MR | Zbl

[12] P. A. Faria da Veiga, M. O'Carroll, E. Pereira, R. Schor, Comm. Math. Phys., 220:2 (2001), 377–402 | DOI | MR | Zbl

[13] R. Schor, J. C. A. Barata, P. A. Faria da Veiga, E. Pereira, Phys. Rev. E, 59:3 (1999), 2689–2694 | DOI | MR