System of equations for stimulated combination scattering
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 1, pp. 67-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a system of equations describing stimulated combination scattering of light. We show that solutions of this system are expressed in terms of two solutions of the sine-Gordon equation that are related to each other by a Bäcklund transformation. We also show that this system is integrable and admits a Zakharov–Shabat pair. In the general case, the system of equations for the Bäcklund transformation of periodic $A_n^{(1)}$ Toda chains is also shown to be integrable and to have a Zakharov–Shabat pair.
Keywords: combination scattering, Toda chain, Bäcklund transformation
Mots-clés : Zakharov–Shabat pair.
@article{TMF_2008_156_1_a2,
     author = {V. A. Andreev},
     title = {System of equations for stimulated combination scattering},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {67--76},
     year = {2008},
     volume = {156},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a2/}
}
TY  - JOUR
AU  - V. A. Andreev
TI  - System of equations for stimulated combination scattering
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 67
EP  - 76
VL  - 156
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a2/
LA  - ru
ID  - TMF_2008_156_1_a2
ER  - 
%0 Journal Article
%A V. A. Andreev
%T System of equations for stimulated combination scattering
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 67-76
%V 156
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a2/
%G ru
%F TMF_2008_156_1_a2
V. A. Andreev. System of equations for stimulated combination scattering. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 1, pp. 67-76. http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a2/

[1] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Phys. Rev. Lett., 19 (1967), 1095 ; В. Е. Захаров, А. Б. Шабат, ЖЭТФ, 61 (1971), 118 ; Л. А. Тахтаджян, ЖЭТФ, 66 (1974), 476; В. Е. Захаров, Л. А. Тахтаджян, Л. Д. Фаддеев, ДАН, 219 (1974), 1334 ; В. Е. Захаров, Л. А. Тахтаджян, ТМФ, 38 (1979), 26 ; А. Е. Боровик, В. Н. Робук, ТМФ, 46 (1981), 371 ; В. А. Андреев, ТМФ, 29 (1976), 213 | DOI | Zbl | MR | MR | Zbl | MR | MR | MR

[2] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Stud. Appl. Math., 53 (1974), 249 ; В. Е. Дринфельд, В. В. Соколов, Итоги науки и техн. Сер. Соврем. пробл. мат. Нов. достиж., 24, 1984, 81 ; А. Н. Лезнов, М. В. Савельев, Групповые методы интегрирования нелинейных динамических систем, Наука, М., 1985 | DOI | MR | Zbl | MR | Zbl | MR | Zbl

[3] A. V. Mikhailov, M. A. Olshanetsky, A. M. Perelomov, Comm. Math. Phys., 79 (1981), 473 | DOI | MR | Zbl

[4] A. P. Fordy, J. Gibbons, Comm. Math. Phys., 77 (1980), 21 | DOI | MR | Zbl

[5] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego prilozh., 13 (1979), 13 | MR | Zbl

[6] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[7] D. J. Kaup, Phys. D, 6 (1983), 143 ; H. Steudel, Phys. D, 6 (1983), 155 ; A. I. Maimistov, E. A. Manykin, Phys. Lett. A, 95 (1983), 216 ; J. Leon, A. V. Mikhailov, Phys. Lett. A, 253 (1999), 33 ; A. S. Fokas, C. R. Menyuk, J. Nonlinear Sci., 9 (1999), 1 ; E. A. Moskovenko, V. P. Kotlyarov, J. Phys. A, 39 (2006), 14591 | DOI | MR | DOI | MR | Zbl | DOI | DOI | DOI | MR | Zbl | DOI | MR | Zbl

[8] T. M. Makhviladze, M. E. Sarychev, L. A. Shelepin, ZhETF, 69 (1975), 499

[9] T. M. Makhviladze, M. E. Sarychev, ZhETF, 71 (1976), 896

[10] A. I. Sokolovskaya, Preprint FIAN No 103, M., 1971

[11] V. A. Andreev, Tr. FIAN, 173, 1986, 200 | MR

[12] V. A. Andreev, TMF, 75 (1988), 340 | DOI | MR

[13] D. Levi, L. Pilloni, P. M. Santini, J. Phys. A, 14 (1981), 1567 ; R. Hirota, J. Phys. Soc. Japan, 50 (1981), 3785 ; T. Miwa, Proc. Japan. Acad., 58 (1982), 9 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl