Analytic description of statistics of spectra of quantum graphs
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 1, pp. 38-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss how to obtain exact and approximate distributions for various statistical characteristics of the spectra of quantum graphs using previously found exact solutions of the spectral problem. We indicate the relation between the appearing spectral decompositions and the theory of weakly dependent random variables and indicate the relation between the known limit theorems for trigonometric sums and the universal statistical properties of the spectra of quantum chaotic systems.
Keywords: quantum chaos, spectral theory, universal distribution, almost independent random variable, analytic method.
@article{TMF_2008_156_1_a1,
     author = {Yu. A. Dabaghian},
     title = {Analytic description of statistics of spectra of quantum graphs},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {38--66},
     year = {2008},
     volume = {156},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a1/}
}
TY  - JOUR
AU  - Yu. A. Dabaghian
TI  - Analytic description of statistics of spectra of quantum graphs
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 38
EP  - 66
VL  - 156
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a1/
LA  - ru
ID  - TMF_2008_156_1_a1
ER  - 
%0 Journal Article
%A Yu. A. Dabaghian
%T Analytic description of statistics of spectra of quantum graphs
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 38-66
%V 156
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a1/
%G ru
%F TMF_2008_156_1_a1
Yu. A. Dabaghian. Analytic description of statistics of spectra of quantum graphs. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 1, pp. 38-66. http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a1/

[1] F. Barra, P. Gaspard, Phys. Rev. E, 63:6 (2001), 066215 | DOI

[2] H. Schanz, U. Smilansky, Phys. Rev. Lett., 84:7 (2000), 1427–1430 | DOI

[3] T. Kottos, U. Smilansky, Phys. Rev. Lett., 79:24 (1997), 4794–4797 | DOI

[4] T. Kottos, U. Smilansky, Ann. Phys., 274:1 (1999), 76–124 | DOI | MR | Zbl

[5] V. I. Arnold, A. Avets, Ergodicheskie problemy klassicheskoi mekhaniki, RKhD, Izhevsk, 1999 | MR | Zbl

[6] M. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York, 1990 | MR | Zbl

[7] M.-J. Giannoni, A. Voros, J. Zinn-Justin (eds.), Chaos et physique quantique, Papers from the Fifty-second Session of the Summer School in Theor. Phys. (Les Houches, August 1–31, 1989), North-Holland, Amsterdam, 1991 | MR

[8] Yu. Dabaghian, R. Jensen, R. Blümel, Phys. Rev. E, 63:6 (2001), 066201 | DOI | MR

[9] Yu. Dabaghian, R. V. Jensen, R. Blümel, Pisma v ZhETF, 74:4 (2001), 258–262 | DOI | MR

[10] R. Blümel, Yu. Dabaghian, R. V. Jensen, Phys. Rev. Lett., 88:4 (2002), 044101 | DOI

[11] R. Blümel, Yu. Dabaghian, R. V. Jensen, Phys. Rev. E, 65:4 (2002), 046222 | DOI | MR

[12] Yu. Dabaghian, R. V. Jensen, R. Blümel, ZhETF, 121:6 (2002), 1399–1414 | MR

[13] Yu. Dabaghian, R. Blümel, Phys. Rev. E, 68:5 (2003), 055201 | DOI | MR

[14] Yu. Dabaghian, R. Blümel, Pisma v ZhETF, 77:9 (2003), 530–533 | DOI

[15] Yu. Dabaghian, R. Blümel, Phys. Rev. E, 70:4 (2004), 046206 | DOI | MR

[16] B. M. Smirnov, UFN, 171:12 (2001), 1291–1315 | DOI

[17] R. Balian, C. Bloch, Ann. Phys., 60:2 (1970), 401–447 ; 64:1 (1971), 271–307 ; 69:1 (1972), 76–160 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[18] S. Gnutzmann, U. Smilansky, Adv. Phys., 55:5–6 (2006), 527–625 | DOI

[19] M. V. Feigelman, V. V. Ryazanov, V. B. Timofeev, UFN, 171:10 (2001), 1099–1115 | DOI

[20] O. Bohigas, M.-J. Giannoni, C. Schmidt, Phys. Rev. Lett., 52:1 (1984), 1–4 | DOI | MR | Zbl

[21] F. Haake, Quantum Signatures of Chaos, Springer, Berlin, 1992 | MR | Zbl

[22] M. L. Mehta, Random Matrices, 2 ed., Academic Press, Boston, MA, 1991 | MR | Zbl

[23] J.-P. Roth, “Le spectre du Laplacien sur un graphe”, Thé orie du potentiel, Proc. Jacques Deny Colloquium (Orsay, France, June 20–23, 1983), Lecture Notes in Math., 1096, eds. G. Mokobodzki, D. Pinchon, Springer, Berlin, 1984, 521–539 | DOI | MR | Zbl

[24] K. G. Andersson, R. B. Melrose, Inv. Math., 41:3 (1977), 197–232 | DOI | MR

[25] G. M. Zaslavskii, N. N. Filonenko, ZhETF, 65:2 (1973), 643

[26] G. M. Zaslavskii, UFN, 129:2 (1979), 211–238 | DOI | MR

[27] N. Bohr, Phil. Mag., 26 (1913), 1–25 ; 476–502 | DOI | Zbl

[28] A. Sommerfeld, Ann. Phys., 51 (1916), 1–94 ; 356:18 (2006), 125–167 | DOI | DOI

[29] A. Einstein, “Zum Quantensatz von Sommerfeld und Epstein”, Sammelband, 9–10, Deutsche Physikalische Gesellschaft, 1917, 82–92 | MR

[30] L. Brillouin, J. Phys. Radium, 7 (1926), 353–368 | DOI

[31] J. B. Keller, Ann. Phys., 4:2 (1958), 180–188 | DOI | MR | Zbl

[32] E. Bogomolny, Nonlinearity, 5:4 (1992), 805–866 | DOI | MR | Zbl

[33] E. Bogomolny, Chaos, 2:1 (1992), 5–13 | DOI | MR | Zbl

[34] H. P. Baltes, E. R. Hilf, Spectra of Finite Systems, Bibliographisches Institut, Mannheim, 1976 | MR | Zbl

[35] Yu. Dabaghian, Phys. Rev. E, 75 (2007), 056214 | DOI | MR

[36] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, GITTL, M., 1956 | MR | MR | Zbl

[37] E. Laguerre, Oeuvres de Laguerre publiées sous les auspices de l'Academie des sciences. T. I. Algèbre. Calcul intégral, eds. Ch. Hermite, H. Poincaré, E. Rouché, Gauthier-Villars, Paris, 1898 ; T. II. Géométrie, 1905 | MR | Zbl | MR | Zbl

[38] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR | MR | Zbl

[39] L. Keipers, G. Niderreiter, Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985 | MR | MR | Zbl

[40] Yu. Dabagyan, Pisma v ZhETF, 83:12 (2006), 685–690 | DOI

[41] Yu. Dabaghian, Spectral statistics for scaling quantum graphs, , 2006 arXiv: quant-ph/0608076

[42] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1963 | MR | MR | Zbl

[43] B. R. Levin (red.), Statisticheskaya teoriya svyazi i ee prakticheskoe primenenie, Radio i svyaz, M., 1979 | MR

[44] M. Pätzold, Mobile Fading Channels: Modelling, Analysis and Simulation, MATLAB and Simulink Based Books, John Wiley and Sons, 2002

[45] V. I. Tikhonov, V N. Kharisov, Statisticheskii analiz i sintez radiotekhnicheskikh ustroistv i sistem, Radio i svyaz, M., 1991

[46] A. Abdi, H. Hashemi, S. Nader-Esfahani, IEEE Trans. Comm., 48:1 (2000), 7–12 | DOI | Zbl

[47] D. Melkonian, T. Blumenthal, E. Gordon, Biol. Cybern., 81:5–6 (1999), 457–467 | DOI | Zbl

[48] P. Beckmann, Probability in Communication Engineering, Harcourt, Brace and World, New York, 1967 | MR

[49] R. Aurich, J. Bolte, F. Steiner, Phys. Rev. Lett., 73:10 (1994), 1356–1359 | DOI

[50] R. Aurich, A. Bäcker, F. Steiner, Internat. J. Modern Phys. B, 11:7 (1997), 805–849 | DOI

[51] F. Barra, P. Gaspard, J. Stat. Phys., 101:1–2 (2000), 283–319 | DOI | MR | Zbl

[52] G. Bor, Pochti periodicheskie funktsii, URSS, M., 2005 | MR | Zbl

[53] C. Corduneanu, Almost Periodic Functions, Wiley, New York–London–Sydney, 1968 | MR | Zbl

[54] A. Zigmund, Trigonometricheskie ryady, Mir, M., 1965 | MR | MR | Zbl

[55] R. V. Gamkrelidze, Yu. V. Prokhorov, V. A. Statyulyavichus (red.), Teoriya veroyatnostei – 6, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundam. napr., 81, VINITI, M., 1991 | MR | MR | Zbl

[56] I. Sunklodas, “Approksimatsiya raspredelenii summ slabo zavisimykh sluchainykh velichin normalnym raspredeleniem”, Teoriya veroyatnostei 6, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundam. napr., 81, eds. R. V. Gamkrelidze, Yu. V. Prokhorov, V. A. Statyulyavichus, VINITI, M., 1991, 140–199 | MR | Zbl

[57] P. Révész (ed.), Limit theorems in Probability and Statistics, 2nd Colloq. on Limit Theorems Probab. Theor. and Statist. (Veszprém, Hungary, June 21–26, 1982), Colloq. Math. Soc. János Bolyai, 36, North-Holland, Amsterdam, 1984 | MR | Zbl

[58] S. Takahashi, “Probability limit theorems for trigonometric series”, Limit Theorems Probab. Theory (Keszthely, 1974), Colloq. Math. Soc. János Bolyai, 11, ed. P. Révész, North-Holland, Amsterdam, 1975, 381–397 | MR | Zbl

[59] W. Philipp, W. F. Stout, “Asymptotic fluctuation behavior of sums of weakly dependent random variables”, Limit Theorems Probab. Theory (Keszthely, 1974), Colloq. Math. Soc. János Bolyai, 11, ed. P. Révész, North-Holland, Amsterdam, 1975, 273–296 | MR | Zbl

[60] W. Philipp, W. Stout, Almost Sure Invariance Principles for Partial Sums of Weakly Dependent Random Variables, Mem. Amer. Math. Soc., 161, no. 2, AMS, Providence, RI, 1975 | MR | Zbl

[61] K. Fukuyama, S. Takahashi, Proc. Amer. Math. Soc., 127:2 (1999), 599–608 | DOI | MR | Zbl

[62] S. V. Levizov, Matem. zametki, 38:2 (1985), 242–247 | MR | Zbl

[63] K. Ôhashi, Anal. Math., 20:1 (1994), 11–25 | DOI | MR | Zbl

[64] J. Hawkes, Z. Wahrsch. Verw. Gebiete, 53:1 (1980), 21–33 | DOI | MR | Zbl

[65] R. Salem, A. Zygmund, Proc. Natl. Acad. Sci. USA, 33:11 (1947), 333–338 ; 34:2 (1948), 54–62 | DOI | MR | Zbl | DOI | MR | Zbl

[66] R. Salem, A. Zygmund, Acta Math., 91:1 (1954), 245–301 | DOI | MR | Zbl

[67] P. Erdős, Magyar Tud. Acad. Mat. Kutat'o Int. Kőzl., 7 (1962), 37–42 | MR | Zbl

[68] A. Főldes, Studia Sci. Math. Hungar., 10:1–2 (1975), 141–146 | MR | Zbl

[69] W. Philipp, Acta Arith., 26:3 (1975), 241–251 | MR | Zbl

[70] I. Berkes, “On the asymptotic behaviour of $\sum f(n_{k}x)$”, Limit Theorems Probab. Theory (Keszthely, 1974), Colloq. Math. Soc. János Bolyai, 11, ed. P. Révész, North-Holland, Amsterdam, 1975, 23–46 | MR | Zbl

[71] I. Berkes, Anal. Math., 4:3 (1978), 159–180 | DOI | MR | Zbl

[72] V. F. Gaposhkin, UMN, 21:6(132) (1966), 3–82 | MR | Zbl

[73] V. F. Gaposhkin, Matem. zametki, 16:6 (1974), 865–870 | MR | Zbl

[74] B. I. Golubov, J. Math. Sci., 24:6 (1984), 639–673 | DOI | Zbl

[75] B. I. Golubov, Dokl. RAN, 20:5 (1979), 1103–1107 | MR | Zbl

[76] P. L. Ulyanov, UMN, 19:1(115) (1964), 3–69 | MR | Zbl

[77] K. Wang, Probab. Theory Related Fields, 98:2 (1994), 229–243 | DOI | MR | Zbl

[78] I. Berkes, Z. Wahrsch. Verw. Gebiete, 47:2 (1979), 157–161 | DOI | MR | Zbl