An $A_{\infty}$ structure on simplicial complexes
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 1, pp. 3-37
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a discrete (finite-difference) analogue of differential
forms defined on simplicial complexes, in particular, on triangulations of
smooth manifolds. Various operations are explicitly defined on these forms
including the exterior differential $d$ and the exterior product $\wedge$.
The exterior product is nonassociative but satisfies a more general relation,
the so-called $A_{\infty}$ structure. This structure includes an infinite set of
operations constrained by the nilpotency relation $(d+\wedge+m+\dotsb)^n=0$ of
the second degree, $n=2$.
Keywords:
simplicial complex, topology, discrete exterior form, infinity structure.
@article{TMF_2008_156_1_a0,
author = {V. V. Dolotin and A. Yu. Morozov and Sh. R. Shakirov},
title = {An $A_{\infty}$ structure on simplicial complexes},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--37},
publisher = {mathdoc},
volume = {156},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a0/}
}
TY - JOUR
AU - V. V. Dolotin
AU - A. Yu. Morozov
AU - Sh. R. Shakirov
TI - An $A_{\infty}$ structure on simplicial complexes
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2008
SP - 3
EP - 37
VL - 156
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a0/
LA - ru
ID - TMF_2008_156_1_a0
ER -
V. V. Dolotin; A. Yu. Morozov; Sh. R. Shakirov. An $A_{\infty}$ structure on simplicial complexes. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 1, pp. 3-37. http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a0/