An $A_{\infty}$ structure on simplicial complexes
Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 1, pp. 3-37

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a discrete (finite-difference) analogue of differential forms defined on simplicial complexes, in particular, on triangulations of smooth manifolds. Various operations are explicitly defined on these forms including the exterior differential $d$ and the exterior product $\wedge$. The exterior product is nonassociative but satisfies a more general relation, the so-called $A_{\infty}$ structure. This structure includes an infinite set of operations constrained by the nilpotency relation $(d+\wedge+m+\dotsb)^n=0$ of the second degree, $n=2$.
Keywords: simplicial complex, topology, discrete exterior form, infinity structure.
@article{TMF_2008_156_1_a0,
     author = {V. V. Dolotin and A. Yu. Morozov and Sh. R. Shakirov},
     title = {An $A_{\infty}$ structure on simplicial complexes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--37},
     publisher = {mathdoc},
     volume = {156},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a0/}
}
TY  - JOUR
AU  - V. V. Dolotin
AU  - A. Yu. Morozov
AU  - Sh. R. Shakirov
TI  - An $A_{\infty}$ structure on simplicial complexes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2008
SP  - 3
EP  - 37
VL  - 156
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a0/
LA  - ru
ID  - TMF_2008_156_1_a0
ER  - 
%0 Journal Article
%A V. V. Dolotin
%A A. Yu. Morozov
%A Sh. R. Shakirov
%T An $A_{\infty}$ structure on simplicial complexes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2008
%P 3-37
%V 156
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a0/
%G ru
%F TMF_2008_156_1_a0
V. V. Dolotin; A. Yu. Morozov; Sh. R. Shakirov. An $A_{\infty}$ structure on simplicial complexes. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 1, pp. 3-37. http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a0/