@article{TMF_2008_156_1_a0,
author = {V. V. Dolotin and A. Yu. Morozov and Sh. R. Shakirov},
title = {An $A_{\infty}$ structure on simplicial complexes},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--37},
year = {2008},
volume = {156},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a0/}
}
TY - JOUR
AU - V. V. Dolotin
AU - A. Yu. Morozov
AU - Sh. R. Shakirov
TI - An $A_{\infty}$ structure on simplicial complexes
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2008
SP - 3
EP - 37
VL - 156
IS - 1
UR - http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a0/
LA - ru
ID - TMF_2008_156_1_a0
ER -
V. V. Dolotin; A. Yu. Morozov; Sh. R. Shakirov. An $A_{\infty}$ structure on simplicial complexes. Teoretičeskaâ i matematičeskaâ fizika, Tome 156 (2008) no. 1, pp. 3-37. http://geodesic.mathdoc.fr/item/TMF_2008_156_1_a0/
[1] E. Witten, Comm. Math. Phys., 118:3 (1988), 411–449 ; Mirror manifolds and topological field theory, ; A. Losev, I. Polyubin, Internat. J. Modern Phys. A, 10:29 (1995), 4161–4178 ; ; M. Alexandrov, M. Kontsevich, A. Schwarz, O. Zaboronsky, Internat. J. Modern Phys. A, 12:7 (1997), 1405–1429 ; ; A. Losev, N. Nekrasov, S. Shatashvili, Nucl. Phys. B, 534:3 (1998), 549–611 ; arXiv: hep-th/9112056arXiv: hep-th/9305079arXiv: hep-th/9502010arXiv: hep-th/9711108 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[2] C. Becchi, A. Rouet, R. Stora, Phys. Lett. B, 52:3 (1974), 344–346 ; Comm. Math. Phys., 42:2 (1975), 127–162 ; И. В. Tютин, Калибровочная инвариантность в теории поля и статистической физике в операторной формулировке, Препринт No 39, ФИАН СССР, М., 1975; R. Stora, “Algebraic structure and topological origin of anomalies”, Progress in Gauge Field Theory, Proc. NATO Adv. Study Inst. (Cargèse, France, September 1–15, 1983), NATO Adv. Sci. Inst. Ser. B: Phys., 115, eds. G. 't Hooft, A. Jaffe, H. Lehmann et al., Plenum Press, New York, 1984, 543–562 ; I. A. Batalin, G. A. Vilkovisky, Nucl. Phys. B, 234:1 (1984), 106–124 ; A. Schwarz, Comm. Math. Phys., 155:2 (1993), 249–260 ; arXiv: hep-th/9205088 | DOI | DOI | MR | MR | DOI | MR | DOI | MR | Zbl
[3] J. D. Stasheff, Trans. Amer. Math. Soc., 108:2 (1963), 275–292 ; 293–312 ; “Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras”, Quantum Groups (Leningrad, 1990), Lecture Notes in Math., 1510, ed. P. P. Kulish, Springer, Berlin, 1992, 120–137 ; E. Getzler, J. D. S. Jones, Illinois J. Math., 34:2 (1990), 256–283 ; B. Keller, Homology Homotopy Appl., 3:1 (2001), 1–35 ; Addendum: 4:1 (2002), 25–28 ; ; T. Tradler, M. Zeinalian (Appendix: D. Sullivan), Algebr. Geom. Topol., 7 (2007), 233–260 ; arXiv: math/0309455 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | DOI | MR | Zbl
[4] A. Losev, Lectures at Dombai and Dubna Schools, 2004, unpublished
[5] L. S. Pontryagin, Osnovy kombinatornoi topologii, Gostekhizdat, M.–L., 1947 ; В. В. Прасолов, Элементы комбинаторной и дифференциальной топологии, МЦНМО, М., 2004 ; В. В. Прасолов, Элементы теории гомологий, МЦНМО, М., 2006 | MR | Zbl | MR | Zbl | MR | Zbl
[6] J. Dodziuk, Amer. J. Math., 98:1 (1976), 79–104 ; D. H. Adams, Phys. Rev. Lett., 78:22 (1997), 4155–4158 ; R-torsion and linking numbers from simplicial abelian gauge theorie, ; Samik Sen, Siddhartha Sen, J. C. Sexton, D. H. Adams, Phys. Rev. E, 61:3 (2000), 3174–3185 ; ; R. Hiptmair, Discrete Hodge operators: An algebraic perspective, PIER, EMW Publishing, Cambridge, MA, 2001, 247–269 ; V. de Beauce, S. Sen, Discretising geometry and preserving topology I: A discrete exterior calculus, ; Discretising differential geometry via a new product on the space of chains, arXiv: hep-th/9612009arXiv: hep-th/0001030arXiv: hep-th/0403206arXiv: hep-th/0610065 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | MR
[7] A. Kozak, Discretization of Chern–Simons like theories, 2004–2006, unpublished; P. Mnev, Notes on symplicial BF theory, arXiv: hep-th/0610326
[8] V. Dolotin, A. Morozov, Introduction to Non-Linear Algebra, World Scientific, Hackensack, NJ, 2007 ; arXiv: hep-th/0609022 | MR | Zbl
[9] V. Dolotin, A. Morozov, Sh. Shakirov, Higher nilpotent analogues of $A_{\infty}$-structure, arXiv: 0704.2884 | MR
[10] B. Zumino, “Chiral anomalies and differential geometry”, Relativity, Groups and Topology, II, eds. B. S. DeWitt, R. Stora, North-Holland, Amsterdam, 1984, 1291–1322 ; А. Ю. Морозов, УФН, 130:3 (1986), 337–416 ; D. Krotov, A. Losev, A. Gorodentsev, Quantum field theory as effective BV theory from Chern–Simons, arXiv: hep-th/0603201 | MR | Zbl | DOI | MR | MR